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Locations of traps were agged so that pitfall traps were placed at identical locations during the two
sampling periods.

2.2 Measurement of site covariates

The geographic location (latitude (LAT) and longitude (LON)) and elevation (ELEV, meters above
sea level) of each bog and forest sample site was determined using a Trimble Global Positioning System
(GPS). At each forest sample site we also estimated available light levels beneath the canopy using
hemispherical canopy photographs, which were taken on overcast days between 10:00 AM and and 2:00
PM at 1 m above ground level with an 8 mm �sh-eye lens on a Nikon F-3 camera. Leaf area index
(LAI, dimensionless) was determined from the subsequently digitized photographs using HemiView
software (Delta-T, Cambridge, UK). Because there was no canopy over the bog, the LAI of each bog
was assigned a value of zero.

To compute a global site factor (GSF, total solar radiation) for each forest sample site (Rich et al.
1993), we summed weighted values of direct site factor (DSF, total direct beam solar radiation) and
indirect site factor (total di�use solar radiation). GSF values are expressed as a percentage of total
possible solar radiation (i.e., above the canopy) during the growing season (April through October),
corrected for latitude and solar track. The GSF of each bog was assigned a value of one.

Digital aerial photographs were obtained for each sampled bog from state mapping authorities,
or, when digital photographs were unavailable (�ve sites), photographic prints (from USGS-EROS)
were scanned and digitized. Aerial photographs were used to construct a set of data layers (Arc-View
GIS 3.2) from which bog area (AREA) was calculated. The area of the surrounding forests was not
measured, as the forest was generally continuous for at least several km2 around each bog.

3 Statistical Analysis

We analyzed the captures of ant species observed at our sample sites using a modi�cation of the multi-
species model of occurrence and detection that includes site-speci�c covariates (Royle and Dorazio
2008, K�ery and Royle 2009). This modi�cation allows a �nite set of candidate models to be speci�ed
and �t to the data simultaneously such that prior beliefs in each model’s utility can be updated (using
Bayes’ rule) to compute the posterior probability of each model. The resulting set of posterior model
probabilities can be used to select a single (\best") model for inference or to estimate scienti�cally
relevant quantities while averaging over the posterior uncertainty of the models (Draper 1995).

To compare our results with previous analyses (Gotelli and Ellison 2002), we analyzed the data
observed in bogs and forests separately. These two habitats are su�ciently distinct that di�erences
in species occurrence { and possibly capture rates { are expected a priori. Furthermore, the potential
covariates of occurrence di�er between the two habitats, adding another reason to analyze the bog and
forest data separately.

3.1 Hierarchical model of species occurrence and capture

We summarize here the assumptions made in our analysis of the ant captures. Let yik 2 f0; 1; : : : ; Jkg
denote the number of pitfall traps located at site k that contained the ith of n distinct species of
ants captured in the entire sample of R
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probabilities to be estimated for each species. In the absence of this replication these two parameters
are confounded.

The observed data form an n�R matrix Y obs of pitfall trap frequencies, so that rows are associated
with distinct species and columns are associated with distinct sample sites. Note that n, the number
of distinct ant species observed among all R sample sites, is a random outcome. In the analysis we
want to estimate the total number of species N that are present and vulnerable to capture. Although
N is unknown, we know that n � N , i.e., we know that the number of species observed in the samples
provides a lower bound for an estimate of N .

To estimate N , we use a technique called parameter-expanded data augmentation (Dorazio et al.
2006, Royle and Dorazio 2011), wherein rows of all-zero trap frequencies are added to the observed
data Y obs and the model for the observed data is appropriately expanded to analyze the augmented
data matrix Y = (Y obs;0). The technical details underlying this technique are described by Royle
and Dorazio (2008, 2011), so we won’t repeat them here. Briey, however, the idea is to embed the
unobserved, all-zero trap frequencies of the N � n species in the community within a larger data set
of �xed, but known size (say, M species, where M > N) for the purpose of simplifying the analysis.
The conventional model for the community of N species is necessarily modi�ed so that each of the
M � n rows of augmented data can be estimated as either belonging to the community of N species
(and containing sampling zeros) or not (and containing structural zeros). In particular, we add a
vector of parameters w = (w1; : : : ; wM ) to the model to indicate whether each species is a member of
the community (w = 1) or not (w = 0). The elements of w are assumed to be independentally and
identically distributed (iid) as follows:

wi
iid� Bernoulli(
)

where the parameter 
 denotes the probability that a species in the augmented data set is a member
of the community of N species that are present and vulnerable to capture. Note that the community’s
species richness N is not a formal parameter of the model. Instead, N is a derived parameter to be
computed as a function of w as follows: N =

PM
i=1wi. Therefore, estimation of 
 and w is essentially

equivalent to estimation of N (Royle and Dorazio 2011).
The incidence matrix of the community (Gotelli 2000, Colwell et al. 2004) is a parameter of the

model that is embedded in an M � R matrix of parameters Z, whose elements indicate the presence
(z = 1) or absence (z = 0) of species i at sample site k. Although Z is treated as a random variable
of the model, each element associated with species that are not members of the community is equal to
zero because zik is de�ned conditional on the value of wi as follows:

zikjwi � Bernoulli(wi ik) (1)

where  ik denotes the probability that species i is present at sample site k. Thus, if species i is
not a member of the community, then wi = 0 and Pr(zik = 0jwi = 0) = 1; otherwise, wi = 1 and
Pr(zik = 1jwi = 1) =  ik. For purposes of computing estimates of community-level characteristics, Z
may be treated as the incidence matrix itself because the M �N rows associated with species not in
the community contain only zeros and make no contribution to the estimates.

The matrix of augmented data Y and the parameters Z and w may be conceptualized as character-
istics of a supercommunity of M species (Table 1). This supercommunity includes N species that are
members of the community vulnerable to sampling and M �N other species that are added to simplify
the analysis. The parameters Z and w are paramount in terms of estimating measures of biodiversity.
We have shown already that estimates of w are used to compute estimates of species richness N (a
measure of gamma diversity). Similarly, Z may be used to estimate measures of alpha diversity, beta
diversity, and other community-level characteristics. For example, summing the columns of Z yields
the number of species present at each sample site (alpha diversity). Similarly, di�erent columns of
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3.1.2 Modeling species captures

We assume a relatively simple model of the pitfall trap frequencies yik, owing to the simplicity of our
sampling design. Speci�cally, we assume that if ants of species i are present at site k (i.e., zik = 1),
their probability of capture pik is the same in each of the Jk replicated traps. This assumption implies
the following binomial model of the pitfall trap frequencies:

yikjzik � Binomial(Jk; zikpik)

where pik denotes the conditional probability of capture of species i at site k (given zik = 1). Note
that if species i is absent at site k, then Pr(yik = 0jzik = 0) = 1. In other words, if a species is absent
at sample site k, then none of the Jk pitfall traps will contain ants of that species under our modeling
assumptions.

None of the covariates observed in our samples is thought to be informative of ant capture prob-
abilities; therefore, rather than using a logistic-regression formulation of pik (as in Eq. 2), we assume
that the logit-scale probability of capture of each species is constant:

logit(pik) = a0i

at each of the R sample sites.

3.1.3 Modeling heterogeneity among species

In order to estimate the occurrences of species not observed in any of our traps, a modeling assumption
is needed to specify a relationship among all species-speci�c probabilities of occurrence and detection.
Therefore, we assume that the ant species in each community are ecologically similar in the sense that
these species are likely to respond similarly, but not identically, to changes in their environment or
habitat, to changes in resources, or to changes in predation. The assumption of ecological similarity
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Ellison (2002) added only a few rare species to their analysis. Instead, we believe the di�erent results
stem primarily from di�erences in the underlying assumptions of these two models. The regression
model assumes (1) that the e�ects of environmental covariates are identical for each species and are
linearly related to species density and (2) that residual errors in species density are normally distributed
and do not distinguish between measurement errors and heterogeneity among species in their response
to covariates. In contrast, the hierarchical model assumes that the e�ects of environmental covariates
di�er among species (Figure 1) and that occurrence probabilities and capture probabilities can be
estimated separately for each species (Tables 3 and 4) owing to the replicated sampling at each site.

The estimated probabilities of occurrence and capture of each species are of great interest in them-
selves and highlight di�erences in species compositions between ants found in bog and forest habitats.
For example, the forest species with the highest occurrence probability was Aphaenogaster rudis (species
complex) ( ̂ = 0:779). This species is taxonomically unresolved and currently includes a complex of
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allows the user to specify a model in terms of its underlying assumptions, which include the distributions
assumed for the observed data and the model’s parameters. The latter distributions include priors,
which are needed, of course, to conduct a Bayesian analysis of the data (see below). Part of the reason
for the popularity of JAGS is that it allows the model to be speci�ed and �tted without requiring the
user to derive the MCMC sampling algorithms used in computing the joint posterior. That said, naive
use of JAGS may yield undesirable results, and some experience is needed to ensure the accuracy of
the results.

We prefer to execute JAGS remotely from R (R Development Core Team 2004) using functions
de�ned in the R package RJAGS (http://mcmc-jags.sourceforge.net). In this way R is used to
organize the data, to provide inputs to JAGS, and to receive outputs (results) from JAGS. However,
the model’s distributional assumptions must be speci�ed in the native language of JAGS. The data
�les and source code needed to �t our model are provided below.

In our analysis of each data set, the posterior was calculated by initializing each of 5 Markov chains
independently and running each chain for a total of 250,000 draws. The �rst 50,000 draws of each
chain were discarded as \burn-in", and every 50th draw in the remainder of each chain was retained
to form the posterior sample. Based on Gelman-Rubin diagnostics of the model’s parameters (Brooks
and Gelman 1998), this approach appeared to produce Markov chains that had converged to their
stationary distribution. Therefore, we used the posterior sample of 20,000 draws to compute estimates
of the model’s parameters and 95% credible intervals.

7.2 Prior distributions

Our prior distributions were chosen to specify prior indi�erence in the magnitude of each parameter.
For example, we assumed a Uniform(0,1) prior for 
, the probability that a species in the augmented
data set is a member of the N species vulnerable to capture. It is easily shown that this prior induces
a discrete uniform prior on N , which assigns equal probability to each integer in the set f0; 1; : : : ;Mg.
We also used the uniform distribution for the correlation parameter �; speci�cally, we assumed a
Uniform(-1,1) prior for �, thereby favoring no particular value of � in the analysis.

Each of the heterogeneity parameters (�a0 ; �b0 ; �bl
) was assigned a half-Cauchy prior (Gelman 2006)

with unit scale parameter, which has probability density function

f(�) = 2=[�(1 + �2)]:

Gelman (2006) showed that this prior avoids problems that can occur when alternative \noninforma-
tive" priors are used (including the nearly improper, Inverse-Gamma(�; �) family).

Currently, there is no consenus choice of noninformative prior for the logit-scale parameters of
logistic-regression models (Marin and Robert 2007, Gelman et al. 2008). To specify a prior for the
logit-scale parameters of our model (�0; �0; �l), we used an approach described by Gelman et al. (2008).
Recall that the covariates of our model are centered and scaled to have mean zero and unit variance;
therefore, we seek a prior that assigns low probabilities to large e�ects on the logit scale. The reason
for this choice is that a di�erence of 5 on the logit scale corresponds to a di�erence of nearly 0.5 on the
probability scale. Because shifts in the value of a standardized covariate seldom, in practice, correspond
to outcome probabilities that change from 0.01 to 0.99, the prior of a logit-scale parameter should assign
low probabilities to values outside the interval (-5,5). The family of zero-centered t-distributions with
parameters � (scale) and �
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parameter of our model. This distribution approximates a Uniform(0; 1) prior for p and assigns low
probabilities to values outside the interval (-5,5).

Given our choice of priors and the amount of information in the ant data, parameter estimates
based on a single model are unlikely to be sensitive to the priors used in our analysis. However, it
is well known that the distributional form of a noninformative prior can exert considerable inuence
on posterior model probabilities (Kass and Raftery 1995, Kadane and Lazar 2004). Because these
probabilities are used to select a single model for inference, we examined the sensitivity of the model
probabilities to our choice of priors. In particular, we considered a t-family approximation of Je�reys’
prior (� = 2:482 and � = 5:100) as an alternative for the logit-scale parameters of our model. As
described earlier, Je�reys’ prior is commonly used in Bayesian analyses of logistic-regression models.

7.3 Data �les and source code

The following �les were used to �t our hierarchical model to the ant data sets.

AntDetections1999.csv
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Figure 1: Estimated e�ects of covariates on occurrence probabilities of ant species in forest habitat.
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Figure 2: Estimates of site-speci�c species richness (open circles with 95% credible intervals) for ants
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Figure 3: Estimates of beta diversity (open circles with 95% credible intervals) between ant communities
present in bog and forest habitats at each sample location.



20

 

Beta diversity between sample sites

R
el

at
iv

e 
fr

eq
ue

nc
y

0.4 0.6 0.8 1.0

0

1

2

3

4

 

Beta diversity between sample sites

R
el

at
iv

e 
fr

eq
ue

nc
y

0.4 0.6 0.8 1.0

0

1

2

3

4

Figure 4: Distribution of estimates of beta diversity computed for all pairwise combinations of samples
collected in forest habitat (upper panel) or bog habitat (lower panel).



21

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

● ● ●
●

●●
●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
15

0.
30

Occurrence probability

C
ap

tu
re

 p
ro

ba
bi

lit
y

●
●

●●

●

●

●

●●
●

●●

●

●● ●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
3

0.
6

Occurrence probability

C
ap

tu
re

 p
ro

ba
bi

lit
y

Figure 5: Estimates of species-speci�c capture probability versus occurrence probability for ants in
forest habitat (upper panel) and bog habitat (lower panel). Note di�erence in scale between ordinates
of upper and lower panels.



22

Site k
Observed Partially observed

species i 1 2 � � � R 1 2 � � � R wi

1 y11 y12 � � � y1R z11 z12 � � � z1R w1

2 y21 y22 � � � y2R z21 z22 � � � z2R w2
...

...
...

...
...

...
...

...
n yn1 yn2 � � � ynR zn1 zn2 � � � znR wn

n+ 1 0 0 � � � 0 zn+1;1 zn+1;2 � � � zn+1;R wn+1
...

...
...

...
...

...
...

...
N 0 0 � � � 0 zN1 zN2 � � � zNR wN

N + 1 0 0 � � � 0 zN+1;1 zN+1;2 � � � zN+1;R wN+1
...

...
...

...
...

...
...

...
M 0 0 � � � 0 zM1 zM2 � � � zMR wM

Table 1: Conceptualization of the supercommunity of M species used in parameter-expanded data
augmentation. Y comprises a matrix of n rows of observed trap frequencies and M � n rows of
unobserved (all-zero) trap frequencies. Z denotes a matrix of species- and site-speci�c occurrence
parameters. w denotes a vector of parameters that indicate membership in the community of N
species vulnerable to sampling.
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Posterior probability
Habitat Covariates Uniform prior Je�reys’ prior

Forest LAT, LAI, GSF, ELEV 0.818 0.767
Forest LAT, LAI, ELEV 0.177 0.229
Forest LAT, ELEV 0.005 0.003
Forest LAT, GSF, ELEV < 0:001 0.001
Bog ELEV 0.424 0.416
Bog None 0.342 0.412
Bog LAT 0.082 0.070
Bog AREA, ELEV 0.060 0.034
Bog LAT, ELEV 0.045 0.029
Bog AREA 0.038 0.036
Bog LAT, AREA 0.006 0.003
Bog LAT, AREA, ELEV 0.004 0.001

Table 2: Posterior probabilities of models containing di�erent covariates of species occurrence prob-
abilities. Covariates include latitude (LAT), leaf area index (LAI), light availability (GSF), elevation
(ELEV), and bog area (AREA). Models with less than 0.001 posterior probability are not shown.
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Capture probability Occurrence probability
Species Median 2.5% 97.5% Median 2.5% 97.5%

Amblyopone pallipes 0.028 0.008 0.073 0.043 0.005 0.237
Aphaenogaster rudis (species complex) 0.237 0.209 0.269 0.779 0.539 0.927
Campnnotus herculeanus 0.090 0.062 0.123 0.255 0.104 0.482
Campnnotus nearcticus 0.035 0.013 0.074 0.083 0.014 0.316
Campnnotus novaeboracensis 0.017 0.008 0.037 0.454 0.121 0.897
Campnnotus pennsylvanicus 0.131 0.107 0.158 0.587 0.322 0.819
Dolichoderus pustulatus 0.011 0.002 0.053 0.042 0.003 0.389
Formica argentea 0.011 0.001 0.053 0.044 0.003 0.411
Formica glacialis 0.012 0.002 0.055 0.045 0.003 0.413
Formica neogagates 0.096 0.049 0.163 0.038 0.005 0.166
Formica obscuriventris 0.010 0.001 0.051 0.046 0.003 0.448
Formica subaenescens 0.051 0.029 0.081 0.229 0.085 0.476
Formica subintegra 0.166 0.083 0.284 0.029 0.003 0.140
Formica subsericea 0.248 0.184 0.320 0.059 0.009 0.218
Lasius alienus 0.053 0.035 0.075 0.499 0.260 0.761
Lasius avus 0.011 0.002 0.051 0.043 0.003 0.397
Lasius neoniger 0.036 0.013 0.076 0.097 0.020 0.333
Lasius speculiventris 0.012 0.003 0.040 0.080 0.009 0.502
Lasius umbratus 0.017 0.007 0.037 0.429 0.109 0.931
Myrmecina americana 0.011 0.002 0.052 0.042 0.003 0.398
Myrmica detritinodis 0.078 0.049 0.117 0.169 0.055 0.378
Myrmica lobifrons 0.056 0.036 0.082 0.299 0.118 0.568
Myrmica punctiventris 0.248 0.218 0.279 0.739 0.474 0.911
Myrmica species 1 (\AF-scu") 0.102 0.078 0.131 0.368 0.152 0.642
Myrmica species 2 (\AF-smi") 0.064 0.039 0.097 0.148 0.036 0.385
Prenolepis imparis 0.012 0.002 0.054 0.031 0.002 0.334
Stenamma brevicorne 0.017 0.005 0.046 0.103 0.014 0.526
Stenamma diecki 0.030 0.014 0.056 0.302 0.097 0.725
Stenamma impar 0.049 0.026 0.081 0.168 0.052 0.396
Stenamma schmitti 0.013 0.005 0.030 0.252 0.046 0.753
Tapinoma sessile 0.023 0.010 0.047 0.171 0.035 0.552
Temnothorax ambiguus 0.056 0.015 0.138 0.031 0.003 0.150
Temnothorax curvispinosus 0.057 0.022 0.113 0.037 0.005 0.169
Temnothorax longispinosus 0.086 0.062 0.114 0.333 0.141 0.587

Table 3: Estimated probabilities of capture and occurrence (with 95% credible intervals) for ant species
captured in forest habitat. Probabilities are estimated at the average value of the covariates observed
in the sample.
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Capture probability Occurrence probability
Species Median 2.5% 97.5% Median 2.5% 97.5%

Camponotus herculeanus 0.014 0.002 0.050 0.190 0.040 0.731
Camponotus novaeboracensis 0.066 0.043 0.094 0.348 0.172 0.571
Camponotus pennsylvanicus 0.007 0.001 0.040 0.134 0.017 0.723
Dolichoderus plagiatus 0.015 0.002 0.073 0.105 0.016 0.515
Dolichoderus pustulatus 0.090 0.071 0.112 0.701 0.491 0.863
Formica neoru�barbis 0.007 0.001 0.040 0.126 0.015 0.691
Formica subaenescens 0.353 0.308 0.402 0.371 0.194 0.580
Formica subsericea 0.014 0.004 0.037 0.295 0.083 0.774


