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In response to global climate change, species will either shift in
distribution as they track their preferred climate, adapt locally,
or decline in abundance ultimately to extinction1,2. A useful

concept for understanding these changes is climatic debt3,4,
which was inspired by the idea of extinction debt5. Assuming
that species’ abundances and geographic ranges will reach an
equilibrium in a constant environment, the environmental lag
(sensu ref. 6) describes how far the observed community is from
the equilibrium predicted by current environmental conditions.
In the case of temperature and climatic debt, this lag relates
to communities responding more slowly than expected to rising
temperatures4. Such debts have been documented for a range
of taxa including forest plants, birds, and butterflies3,7–9, and
must eventually be paid through migration, local adaptation, or
extinction.

The climatic debt model has focused on warming as the sole
environmental determinant of community change. However,
recent work has shown how a range of biotic and abiotic factors
contribute to the total debt4. In theory, climatic debts could be
reduced by management strategies such as assisted migration
to unoccupied sites10 or the introduction of genotypes that are
better adapted to warmer conditions11.

An important alternative to the climatic debt model is that
communities are not in disequilibrium with environmental con-
ditions. Instead, communities are in equilibrium, but are affected
simultaneously by changes in temperature and other environ-
mental factors, which could either compound or offset the effects
of rising temperature12. Reducing a second stressor accumulates
environmental credit which could be used to pay the climatic
debt, and may be an important mitigation strategy to limit
damage from increasing temperatures.

Here, we introduce the novel concept of water quality credit,
which may have paid the climatic debt accumulated by macro-
invertebrate communities in English and Welsh rivers through
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Climatic debt and water quality credit. Although the Markov
model revealed minimal net environmental lag in English and
Welsh rivers, this does not preclude the formation of debts
and credits that may have cancelled each other out, leading to
a negligible net lag. Specifi
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pollutant inputs, including fine sediments, and expanding ripar-
ian tree cover to shade the channel. In the same way as for
biodiversity offsetting29, the value of the credit–debt approach
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England and Wales, and (ii) an extensive quality assurance procedure revealed a
near-constant error rate through time (see ref. 18). Sampling intensity varied
through space and time (mean = 948 locations sampled per year; Supplementary
Fig. 2a), but a similar subset of rivers was sampled in each year (Supplementary Fig.
2b). Where a location was sampled multiple times in the same year, one sample was
selected at random. This led to a final sample size of 19,915 samples, creating
14,343 annual transitions: a mean of 6.68 per site or 717.2 per year (Supplementary
Table 1).

Macroinvertebrate samples were taken in spring (March–May) using a standard
3-min kick sampling protocol37. Identification was primarily to family level: here
we follow the taxonomy of Vaughan and Ormerod19 (n = 78 taxa). Taxon
abundance was recorded either as counts of individuals or the log10 abundance
class to which each taxon belonged (e.g. 1–9 individuals or 10–99 individuals). To
harmonise the abundance data, we converted all data to log10 abundance classes
and recorded the abundance as the mid-point of that class (e.g. the class 1–9 was
recorded as 5.5). The classification and Markov model analyses below were run
with both presence–absence and abundance versions of the data: in the main paper
we focus upon the conservative presence–absence approach.

Water chemistry and temperature were recorded by the Environment Agency at
monthly intervals over the same time period as the biological sampling. In addition
to water temperature, we focused on three water quality determinants: BOD,
nitrate, and orthophosphate (sampled using standard methods18). Total oxidised
nitrogen was sometimes recorded in place of nitrate. However, because nitrate
often exceeded 99% of the total when both were recorded, we regressed nitrate on
total oxidised nitrogen (linear regression: n = 79,781, R2 = 0.98) and used this to
impute missing nitrate values (n = 20,217; ref. 18). We filtered the data set to
remove locations that were immediately downstream of outfalls from sewage
treatment works or industrial discharges.

Median water chemistry and temperature were calculated at each location for
the 12 months prior to the spring biological sampling period (i.e. March–February
inclusive); years at a sampling site were rejected if they contained fewer than nine
monthly samples. This resulted in an initial data set with 10,790 locations (mean of
9.7 years per location; 1991–2011) with all four variables sampled. When >50% of
samples were below detection limits, annual medians were imputed at each location
using the method of regression-on-order-statistics (NADA package38).

Daily mean discharge data were sourced from the Centre for Ecology and
Hydrology’s National River Flow Archive. We used data from 943 stations across
England and Wales (mean = 19.3 years 1991–2011) and calculated annual median
discharge for the same 12 month periods as for chemistry. The discharge in m3 s−1

was divided by the catchment area and expressed in units of mm day−1 (ref. 39) to
give a standardised run off measurement that was independent of stream size
(catchment area).
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