

m n ∬_in . in in im l n d <u>n</u> in n¹ m, n $m^{\frac{1}{2}}$ ૢૼૼૺૼૼૼ lim ∮ , n^j m ____ n im. limi n m 1: 4: $\lim_{n \to \infty} \frac{1}{n} \lim_{n \to \infty}$ i i n 1 n

Unin, in Him fin Alim n, N N'	
$n \dots n^{1}$ n. In $m \dots n^{1}$	· · · · · · · · · · · · · · · · · · ·
$\frac{1}{1}$, $\frac{1}{n}$,	

1). n >50%) in 38). E I n in . in m^o $^{-1}(...,^{39})$ $mm^{\frac{1}{2}}$

m .i

i).i) n.¹⁸

 $m = in \dots mm ni i = n i \dots n n' in Glob. Change Biol. 1, 1085–1099 (2013).$ 52. <u>& H U:</u> 22 2 2 Glob. Challe Biol. 1, 1085-1099 (2013).
C. ... m. R: A Language and Environment for Statistical Computing (F n¹ i n i i l C m- in i i n n, A i i , 2018)
a. ... i , J. C. & B ... , D. Mixed-Effects Models in S and S-PLUS. (annum i i i n, F. ... & C n n in , J. A. ... i and i i n i n. Comparable in the second statistical computing in the second statistical computer statistica 1.Jiin Geomorphology 1 , 121–131 (2013). 1 m Α En i nm n A n ... Water for Life and Livelihoods: A Framework for 36 River Basin Planning in England and Wales (En i nm n A n -, Bi En inm n An. 2006). 44 I.L. $A_{n} \rightarrow B_{1}$, <u>J. Procedures for Collecting and Analysing Macroinvertebrate</u> samples (En i, nm, n, A, n, <u>B</u>), <u>1999</u>). 37. ľ 38. m lid 4 i n limi : - l n I. 🛴 n 🕅 J.G. 1 in n i. i. Comput. Geosci. 1, 1241–1248 (2005). 39. Α ١ m 40. 019-09736-3. Cluster Analysis Basics and Extensions. 41. . , A., H 1. I. n. m. in in in mini il nlin .://n.n.m/ . in n. mi i n/ Nature Communications $\mathbf{n} := \mathbf{n}^{T} = \mathbf{k}^{T}$ n¹ i n n n.m ni 11. Int. J. Appl. Earth Obs. Geoinf. , 202-216 (2005). →, ↓ . Generalized Additive Models: An Introduction with R. 44. ' …in.∳ … minn li Im. nini inl filiin. (C = m n & H U/C C, B n, 2006). \mathbb{I} , H. Matrix Population Models $2n^{i}$ $\frac{1}{2}n$ (in A. i..., 45. C 48. H U, F. E. rms: Regression Modeling Strategies. n 5.1 1. . ://C ↓ . -. . /_ = m (2017). in i , J., B , D., D. _. <u>& , D. C</u> m. nlme: 49. Linear and Nonlinear Mixed Effects Models. in 3.1-

n in . J. Biogeogr. , 752–766 (2010).