




duce similar results to Sanderson et al.’s (1998) algorithm, which
samples nodes exhaustively and retreats sequentially. As with 
Sanderson et al.’s (1998) Knight’s Tour, our Random Knight’s
Tour begins with an empty matrix and fills it by sequentially add-
ing randomly chosen cells and backtracking when necessary until
a solution is reached. In our Random Knight’s Tour, the algorithm
does not sample exhaustively at each node, but only examines a
small number of randomly chosen cells for filling. If a cell cannot
be filled, our algorithm retreats by randomly removing a filled cell
from anywhere in the matrix, not necessarily the last cell filled.
Although not mentioned by Sanderson et al. (1998), Stone and
Roberts (1990) also reported on the results of a Random Knight’s
Touralgorithm (the “Milne method”) that gave similar results to
their swap algorithm (L. Stone, personal communication).

For small matrices, we sampled a single randomly chosen cell
at each node. If a usable cell could not be found, the algorithm im-
mediately retreated one step. For large matrices, this algorithm
was inefficient because the program spent too much time back-
tracking. For the Vanuatu matrix, we analyzed a range of sampling
intensities (Table 2). The lowest sampling intensity of 444 cells 
(~ 50% of the open cells) allowed us to create 1,000 random ma-
trices in approximately 12 h of simulation time.

Exhaustive Knight’s Tour

For this algorithm, we increased the sampling intensity to avery
large number, so that the available cells at each node were exhaus-
tively searched. For the Vanuatu matrix, we sampled 8,888 cells at
each node, ensuring that all available cells were checked before
the algorithm backtracked. Our Exhaustive Knight’s Tour is iden-
tical to Sanderson et al.’s (1998) algorithm, except that we did not
retreat sequentially when backtracking. As we show, this algo-
rithm generates results that are qualitatively similar to those of
Sanderson et al. (1998), although we did not observe the very
large variances generated by their algorithm.

Our algorithms were programmed in Delphi Version 4.0, and
implemented in EcoSim Version 5.0 (Gotelli and Entsminger
2000). The on-line version of EcoSim contains the Sequential
Swap, Independent Swap, and Random Knight’s Tour algorithms,
and allows for the choice of the C-score, the number of checker-
boards, the number of species combinations, and the variance ratio
(Schluter 1984) as co-occurrence indices. The on-line version also
contains data matrices for the West Indian finches and Virginia
ants that are describedin this paper. A special compiled version of
EcoSim that analyzes the S



nificantly from that generated by the Knight’s Tour algo-
rithm. It is on the basis of this result that Sanderson et al.
(1998) concluded that the S2 metric is flawed and the
randomization method of Manly (1995) is biased.

However, Sanderson et al.’s (1998) results are not di-
rectly comparable to Roberts and Stone’s (1990), in part
because Sanderson et al. (1998) used 5,000 simulations,
whereas Roberts and Stone (1990) used 1,000. More im-
portant, Robertsand Stone (1990) imposed an additional
constraint in their simulations that does not appear to
have been incorporated by Sanderson et al. (1998). In
their analysis, Roberts and Stone (1990) maintained the
so-called “incidence function” of each species, so that
the simulated range of island sizes occupied by each spe-
cies matched that in the observed data set. This addition-
al constraint means that the matrices created by Roberts
and Stone (1990) constituted a subset of all random ma-
trices that maintained row and column totals.

These different procedures do account for some, 
but not all, of the differences between the results of 
Sanderson et al. (1998) and Roberts and Stone (1990).
When we analyzed the Vanuatu matrix with the Sequen-
tial Swap algorithm, we also obtained a significant result
(P=0.039), though not as extreme as that reported by
Roberts and Stone (1990; P<0.001). Our results from the
Sequential Swap matched the results of the Independent
Swap, in which each matrix is constructed from a series
of Independent Swap s (Table 1).

Our Random Knight’s Tour generated results that
were very similar to those of the Sequential and Indepen-
dent Swap. For a small data set, we confirmed that the
Random Knight’s Tourdoes generate a non-biased sam-
ple of random matrices (Appendix). In contrast, our 
Exhaustive Knight’s Tour generated results very differ-
ent from the Random Knight’s Tour and the two Swap
algorithms (Table 1). As reported in Sanderson et al.’s
(1998) study, our Exhaustive Knight’s Tour led to a shift
in the mean and an increase in the variance, though not
as extreme as Sanderson et al. (1998) found with their al-
gorithm.

The behavior of the Knight’s Tour fill algorithms are
very sensitive to the amount of sampling at each node. If
exhaustive sampling is used, the results tend towards
those reported by Sanderson et al. (1998). With less ex-
haustive sampling, the results converge towards those of
the swap algorithms (Table 2).

Type I error analysis

Repeated swapping of submatrices will theoretically pro-
duce the full set of null matrices (Brualdi 1980), and we
note that the Swap algorithms and the Random Knight’s
Tour produce consistent results. In their criticism of the
Sequential Swap algorithms, Sanderson et al. (1998)
caution that “it cannot be guaranteed that cyclic pertur-
bations can be avoided. Thus, it is possible to perform
two or more perturbations and end up with the same ma-
trix”.

However, cyclic perturbations are unlikely for most
real matrices. For example, in the Vanuatu matrix, there
are initially 14,676 different submatrices that can be
swapped at the first step of the Sequential Swap proce-
dure. Thus, the chance of reversing a forward step and
generating the same matrix configuration is 1/14,676=
6.8×10-5. We agree with Sanderson et al. (1998) that
there are many possible matrix rearrangements that can
be created for the Vanuatu matrix (and most real pres-
ence-absence matrices) that satisfy row and column to-
tals. Therefore it is unlikely that cyclic perturbations are
a serious problem for the Sequential Swap algorithm.

Sanderson et al. (1998) rejected the Sequential Swap
algorithm because it gave different results for the 
Vanuatu presence-absence matrix than did their Knight’s
Tour algorithm. However, it is not logical to evaluate dif-
ferent algorithms by comparing their behavior with a real
presence-absence matrix – such a matrix will contain un-
known amounts of biological structure and randomness.
Instead, we should compare the performance of algo-
rithms on artificial data sets with known properties (e.g.,
Gotelli et al. 1997; Garvey et al. 1998; Shenk et al.
1998).

By claiming that Roberts and Stone’s (1990) finding
of a non-random S2 metric was incorrect, Sanderson et
al. (1998) invoked a Type Ierror, in which a true null hy-
pothesis is incorrectly rejected. To attack this problem
directly, we use artificial data sets to decide whether
Roberts and Stone (1990) incorrectly rejected the null
hypothesis for the Vanuatu matrix. We first created 100
random matrices in which we were sure there should be
no pattern present. We wanted these matrices toresemble
the Vanuatu matrix, but with no trace of biological struc-
turing.

To create such matrices, we began with the original
Vanuatu matrix and then reshuffled the cells within each
row. Reshuffling the cells within each row eliminates
any differencesamong sites due to area, resources, or
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Table 2 Effects of sampling intensity on performance of the Knight’s Touralgorithm. For the Vanuatu matrix, results are given for 1000
simulations. Sampling intensity indicates the number of cells the algorithm samples before backtracking. Other variables as in Table 1

Sampling intensity x̄ Simulated σ2�



habitat availability. This is analogous to a colonization
model in which all sites are equiprobable, and each spe-
cies selects a site independently of the presence of any
other species. We stress that the creation oftest matrices
in this way is not circular, because it is a completely dif-
ferent filling algorithm than either the swap or fill algo-
rithms.

The resulting set of 100 matrices should not exhibit
any non-randomness as a group, although we would ex-
pect that, by chance, approximately 5% of these matrices
would generate significant results in a well-behaved sta-
tistical analysis. Running more than 100 matrices in this
way would have been desirable, but the test is time-con-
suming, and the error frequency shouldnot be apprecia-
bly different for 100 vs 1,000 matrices.

Next, we analyzed each random matrix with the Se-
quential Swap algorithm, completing 5,000 iterations
and performing separate analyses for the S2 and the
C-score indices. Thus, although the column totals for
each random matrix could vary freely as the matrix was
being constructed, the resulting column and row totals
were fixed in the Sequential Swap algorithm. For each
matrix, we recorded the upper-tail probability that the
observed index was more extreme than predicted by the
null model. If Sanderson et al.’s (1998) claim of a Type I
error is correct, we should find that many more than 5 of
the 100 random matrices caused the null hypothesis to be
rejected. On the other hand, if 5 or fewer of the 100 ran-
dom matrices caused the null hypothesis to be rejected at
the 0.05 significance level, there would be no indication
of an excessive Type I error rate, and Roberts and
Stone’s (1990) original conclusion would be supported.

Table 3 gives the ordered upper-tail probabilities for
the 15 most extreme random matrices. For the S2 metric,

5 out of 100 random matrices rejected the null hypothe-
sis at P=0.05, and 12 out of 100 matrices rejected the
null hypothesis at P=0.10. The calculated P value for the
actual Vanuatu matrix was 0.0042. This value was more
extreme than 98 of the 100 random matrices, suggesting
that the probability of a Type I error for the S2 index of
the Vanuatu matrix was less than 0.02.

For the C-score, 5 out of the 100 random matrices re-
jected the null hypothesis at P=0.05, and 12 out of 100
random matrices rejected the null hypothesis at P=0.10.
The calculated P value for the actual Vanuatu matrix was
P=0.0006. This value was more extreme than the tail
probability for all 100 of the random matrices, suggest-
ing that the probability of a Type I error for the C-score
metric of the Vanuatu matrix was less than 0.01.

Thus, we find no evidence that Roberts and Stone
(1990) made a Type I error when they rejected the null
hypothesis for the S2 metric of the Vanuatu matrix. When
the Sequential Swap algorithm is used on a set of ran-
dom matrices, it correctly generates a non-significant up-
per-tail pattern 95% of the time. In contrast, the S2 and
C-score indices for the actual Vanuatu matrix are signifi-
cantly larger than expected by chance, and the pattern is
more extreme than in most random matrices that have
identical row totals. These analyses of random matrices
support the original conclusions of Roberts and Stone
(1990). The S2 metric for the Vanuatu matrix is signifi-
cantly larger than chance, and the Sequential Swap
method does not have an excessive Type I error rate.

Discussion

Which algorithm should be used?

Our results suggest that the Knight’s Tour algorithm of
Sanderson et al. (1998) should not be used for null mod-
el analysis. This algorithm does not sample matrices
equiprobably (Appendix), and the results it produces rest
delicately on the assumption of exhaustive sampling at
each node (Table 2). The Type I and Type II error prop-
erties of Sanderson et al.’s (1998) Knight’s Tour are un-
known, and the anomalous result it generates for the
Vanuatu matrix (Table 1) is not a valid basis for claiming
that “results from previous studies are generally flawed”.



absence matrix they tested. G. Cobb (Department of
Mathematics, Mt. Holyoke College) found that small
runs of 1,000 replicates of the Sequential Swap were sig-
nificantly heterogeneous and autocorrelated, due to simi-
larity of sequential matrices generated by the algorithm.
However, Cobb also found that a set of random matrices
generated by the Sequential Swap from the presence-ab-
sence matrix of Darwin’s finches had a uniform proba-
bility distribution, as it should for an unbiased test. Col-
lectively, these results suggest the Sequential Swap per-
forms well in empirical tests, and its behavior on the
Vanuatu matrix converges with that of the Independent
Swap, Zaman and Simberloff’s (unpublished data)
Weighted Swap, and our Random Knight’s Tour.

How should indices be tested?

Sanderson et al. (1998) followed the lead of Connor and
Simberloff (1979) and plotted the number of species
pairs sharing 0,1,2...n islands. They tested for deviations
of observed and expected values in each category by
constructing a parametric 99% confidence interval for a
Student’s t-test. Observations that fell outside of this in-
terval were classified as significant. This procedure is
very similar to the original chi-square test that Connor
and Simberloff (1979) used to evaluate the same distri-
bution of data. As Roberts and Stone (1990)thoroughly
explained, a parametric chi-square test is inappropriate
in this case because the set of shared island numbers are
not independent observations. Sanderson et al. (1998) re-
vived this error by using a t-test and evaluatingall of the
species pair combinations. No appeals to parametric the-
ory can get around the fact that these numbers are not in-
dependent. Indeed, one of the major reasons for using
randomization methods in the first place is to avoid
problems of exactly thissort.

To test the significance of patterns in null model anal-
ysis, we prefer the methods that are used in classic ran-
domization tests (Edgington 1987; Manly 1991): de-
scribe the pattern in the matrix with a single index, and
compare the observed value of that index directly to the
distribution of index values from the simulated matrices.
Extreme values of the observed index in the tails of the
distribution indicate statistically significant patterns.

Which co-occurrence index should be used?

The utility of species co-occurrence indices should be
based not only on their statistical properties, but on their
relationship to ecological theory. Sanderson et al.’s
(1998) used the individual deviations of species-pair
classes as their index. Thus, an assembly rule derived
from their analysis of the Vanuatu matrix (their Fig. 2)
would be: “There are fewer avian species pairs occupy-
ing 2 islands and 9 islands, and more species pairs occu-
pying 10 islands, than expected by chance in the Vanuatu
Archipelago”. We do not see how meaningful biological

interpretations could be attached to such an assembly
rule.

In contrast, we prefer three different indices that 
address Diamond’s (1975) assembly rules model: the
number of species combinations (Pielou and Pielou
1968), the number of species pairsforming perfect check-
erboard (Diamond 1975), and Stone and Robert’s (1990)
C-score. A fourth metric, Schulter’s (1984) variance ra-
tio, is also a useful measure of species covariance. How-
ever, the variance ratio is determined solely by the row
and column sums of the matrix, so it cannot be tested us-
ing the randomization algorithms described in this paper,
all of which preserve row and column sums (Gotelli
2000).

Pielou and Pielou (1968) first introduced the number
of species combinations as an index of community struc-
ture. This index is directly related to Diamond’s (1975)
first and second assembly rules:

“1. If one considers all the combinations that can be
formed from a group of related species, only certain
ones of these combinations exist in nature.”

“2. These permissible combinations resist invaders that
would transform them into a forbidden combina-
tion.”

If assembly rules 1 and 2 are met, a set of islands or sites
should harbor significantly fewer species combinations
than expected by chance.

A second useful index is the number of species pairs
that never co-occur, forming “checkerboard” distribu-
tions. This index describes Diamond’s (1975) fifth as-
sembly rule:

“5. Some pairs of species never coexist, either by them-
selves or as part of a larger combination.”



randomness in these indices (Weiher and Keddy 1999).
However, the null model analysis is the important first
step towards at least establishing whether the patterns
are random or not.

Although the C-score, number of checkerboards, and
number of species combinations are closely related, they
measure different patterns in a matrix and have different
statistical properties. Gotelli (2000) has carried out simu-
lation tests with these indices andcompared their perfor-
mance on random matrices and on structured matrices
that have differing levels of random “noise” added to the
co-occurrence patterns.

The C-score, when used in combination with the 
Sequential Swap algorithm, has good statistical power
for detecting pattern in structured matrices that have a
considerable amount of random noise added to them. At
the same time, it has good Type I error properties and
does not lead to an excessive rejection of the null hy-
pothesis when tested with random matrices (Gotelli
2000). A low frequency of Type I errors for the C-score
and the Sequential Swap algorithm are confirmed by our
additional analyses of the Vanuatu matrix in this paper
(Table 3).

Empirical examples

To illustrate utility of the methods we propose, we ana-
lyzed three presence-absence matrices with the Sequen-
tial Swap algorithm and present patterns based on the
C-score, the number of checkerboard pairs, and the num-
ber of species combinations. We used 5,000 iterations in
each analysis. Results were similar when these matrices
were analyzed with the Random Knight’s Tour.

For the Vanuatu avifauna, the C-score was signifi-
cantly greater than expected by chance (Fig. 1a), but the
number of checkerboard pairs (Fig. 1b) and the number
of species combinations (Fig. 1c) did not differ from ran-
dom. For the number of species combinations, we note
that each of the 28 islands in the Vanuatu matrix support-
ed a different species combination. Similarly, in all 5,000
simulated communities, species combinations were nev-
er repeated for any pair of islands, so 28 combinations
were observed in every case.

For the West Indies fiches, the C-score was also larger
than expected by chance (Fig. 2a). Only 10 unique spe-
cies combinations occurred on the 19 islands, which was
significantly less than expected by chance (Fig. 2b), con-
firming Diamond’s (1975) 1st and 2nd assembly rule
patterns. The number of checkerboard pairs did not dif-
fer from random (Fig. 2c).

For the Virginia ants, none of the three co-occurrence
indices were different from random (Fig. 3a–c). Because
the ant matrix was created from a grid of pitfall traps that
sampled species at a very small spatial scale (5×5 m), we
would not have expected to see much structure in com-
parison to the avifauna of island archipelagos.

In conclusion, we are in agreement with Sanderson et
al. (1998) on several major issues. First, we agree that

the entire issue of testing for non-randomness in species
co-occurrence patterns is important, especially with the
continued interest in community assembly rules (Weiher
and Keddy 1999) and computer simulation models 
(Hilborn and Mangel 1997; Cipra 2000). Second, we
agree that an algorithm that maintains observed row and
column sums is useful for testing community patterns,
although this is by no means the only valid null model
(Gotelli 2000). Wealso agree that, for most real matrices,
there are many different matrix rearrangements that can
be constructed that satisfy the row and column con-
straints.

However, there are also some major areas of disagree-
ment. Our results suggest that Sanderson et al.’s (1998)
Knight’s Touris a biased algorithm that should not be
used for null model analysis. We think it is inappropriate
to use a t-test on non-independent data, and that devia-
tions from the shared-species distribution cannot be inter-
preted biologically. We prefer a simple randomization test
for assessing statistical significance. We recommend the
C-score, number of species combinations, and number of
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Fig. 1a–c Null model analyses of the Vanuatu avifauna. Each his-
togram shows the range of values from 5,000 simulated assem-
blages. The arrow indicated the observed value, and p is the one-
tailed probability. a C-score; b number of species combinations;
c number of species pairs forming perfect checkerboards



checkerboard pairs as three indices with good statistical
properties that are directly relevant to Diamond’s (1975)
assembly rules model. Finally, an error analysis of ran-
dom matrices supports Roberts and Stone’s (1990) origi-
nal conclusions: the S2 metric for the Vanuatu matrix is
larger than expected by chance. There is no evidence that
this pattern is caused by a Type I error because random
matrices tested with the Sequential Swap algorithm re-
jected the null hypothesis 5% of the time (Table 3).

This paper represents the latest contribution to a con-
troversy over the statistical analysis of the Vanuatu pres-
ence-absence matrix that has lasted for over 20 years
(e.g., Connor and Simberloff 1979,1983; Diamond and
Gilpin 1982; Wilson 1987; Roberts and Stone 1990; 
Sanderson et al. 1998; Zaman and Simberloff, unpub-
lished data).No wonder some ecologists are uneasy about
the use of null models! Future exchanges can be mini-
mized by carefully examining the statistical properties of
null models, and systematically testing their behavior
with artificial data sets of known structure. Such analys-
es are tedious and not very exciting, but they are neces-



Suppose that we wish to construct random matrices with
four cells filled. The matrix constraints we use are row
totals of (1, 2, 1) and column totals of (1, 2, 1). There are

126 unique ways to fill a 3×3 matrix with four 1s. Of
these 126 matrices, exactly 5 matrices satisfy the speci-
fied row and column constraints. We label these matrices
A-E:

Matrix A

Matrix B

Matrix C

Matrix D

Matrix E

An unbiased null model algorithm should generate all
five matrices with frequency f=0.20.

Exhaustive Knight’s Tour

The probabilities for the Exhaustive Knight’s Tour can
be calculated by hand for this small example. We illus-
trate the method with matrix A, which is the easiest to
compute. Matrix A has entries in cells 2,4,6, and 8.
There are 4!=(4)(3)(2)(1)=24 sequences by which this

matrix can be reached filling sequentially with the ex-
haustive knight’s tour.

We calculate the probabilities of reaching each partic-
ular sequence through the Exhaustive Knight’s Tour, and
then sum those probabilities to obtain the total frequency
with which the matrix is reached. Suppose we wish to
calculate the probability that Matrix A is reached by fill-
ing in sequence the cells 2, 4, 6, and 8. Thus, we seek to
calculate P(Matrix A |2468).

For the initial placement of cell 2 in an empty matrix,
the probability is (1/9).

Once cell 2 has been selected, matrices C and D are
eliminated from the solution space. For the next cell se-
lection, cell 2 cannot be chosen again because it is al-
ready filled. Moreover, cells 1 and 3 are also not possible
because these would violate row or column constraints.
Thus, on the next step of the exhaustive knight’s tour,



P(Matrix B)=0.21296. Matrices B–E are oversampled by
the Exhaustive Knight’s Tour Knight’s Tourbecause
there are more starting positions from which these 
matrices can be reached. Note that the patterns in Matri-
ces B–E can all be produced by reflection or transposi-
tion, and the probabilities of reaching these matrices 
turn out to be identical. We also confirm that
0.14815+(4)(0.21296)=1.0000, as it should.

Sequential Swap

To calculate the expected frequencies for the Sequential
Swap, we used a different approach. For each matrix
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