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benefit from additional warming, because they typically 
operate at sub-optimal temperatures and would thus be 
shifted up their performance curve toward optimal operat-
ing body temperature (Deutsch et al. 2008; Diamond et al. 
2012; Clusella-Trullas et al. 2011; Kellermann et al. 2012). 
However, taxa with larger thermal safety margins gener-
ally occupy locations with high-temperature variation and 
extreme high temperatures may cause overheating (King-
solver et al. 2013). In addition, species that overwinter may 
be at risk of mortality during the winter months, because 
warming can impact the microclimate and expose quiescent 
organisms to higher temperatures (Williams et al. 2015).

Critical thermal limits may also vary with environmen-
tal context, enhancing or reducing the thermal safety mar-
gin (Cahill et al. 2013; Chahal and Dev 2013; Duffy et al. 
2015). Although thermal tolerances are typically measured 
in animals maintained under ideal conditions, extreme heat 
is projected to co-occur with reduced precipitation (Muel-
ler and Seneviratne 2012), which may result in species 
simultaneously encountering both thermal and desicca-
tion stresses. Furthermore, temperature may act indirectly 
through shifts in prey availability or interspecific compe-
tition, potentially leading to nutritional stress (Araújo and 
Luoto 2007).

The combined effect of multiple environmental stressors 
ultimately depends on the underlying molecular pathways 
used to combat their effects (Sinclair et al. 2013). If differ-
ent stressors activate the same response pathways, exposure 
to one stressor can enhance resistance to another in a cross-
protective manner (cross tolerance; Todgham and Stillman 
2013; MacMillan et  al. 2009). In Antarctic midges, for 
example, desiccation provided cross protection against heat 
stress (Benoit et  al. 2009). One molecular pathway likely 
to show a generalized response is the heat-shock response 
(HSR), which senses and repairs protein damage (Richter 
et  al. 2010). However, if different stressors activate dis-
tinct molecular pathways, exposure to one may have no 
effect on response to the other, or may even decrease tol-
erance (cross-susceptibility) due to the energetic demands 
of responding to multiple stressors simultaneously (Sinclair 
et al. 2013; Todgham and Stillman 2013). In fruit flies, des-
iccation stress reduces upper thermal limits across a broad 
range of sub-lethal temperatures (Da Lage et  al. 1989). 
Similarly, starvation has been found to either have no effect 
(Bubliy et  al. 2012b) or a cross-susceptibility effect on 
thermal tolerance (Floyd 1985).

Ants are a good system to explore the impact of differ-
ent stressors on thermal limits, because they have colo-
nized and inhabit diverse environments (Moreau and Bell 
2013; Economo et  al. 2015). Many species have a broad 
geographical range and are exposed to considerable envi-
ronmental variation (Sanders et  al. 2007; Dunn et  al. 
2009; Kaspari et  al. 2015). Foraging activity is sensitive 

to temperature (Albrecht and Gotelli 2001; Wittman et al. 
2010), soil moisture (Gordon 2013), available resources 
(Stuble et  al. 2013), and species interactions (Rodriguez-
Cabal et al. 2012) that altogether impact food intake for the 
whole colony. Ants are experimentally tractable for stud-
ies of physiological studies in response to multiple envi-
ronmental conditions. Although ants likely face multiple 
stressors, we have very little understanding of how these 
additional sources of environmental stress such as desicca-
tion and starvation are likely to impact thermal tolerance.

In this study, we tested how desiccation and nutritional 
stressors affect thermal tolerance in a common forest ant, 
Aphaenogaster picea. In a static heat-shock experiment, 
we compared knock-down (KD) times of workers main-
tained in control conditions to those exposed to either des-
iccation or starvation stress at progressive levels of sever-
ity. To determine whether changes in thermal tolerances 
were due to repression or enhancement of the heat-shock 
response (HSR), we quantified baseline and transcriptional 
activation of two representative genes: hsp70 and hsp40. 
We found that desiccation and starvation did not alter the 
HSR, but both diminished thermal limits across all levels 
of severity.

Materials and methods

Natural history of Aphaenogaster picea

Aphaenogaster picea is a ground-dwelling species that 
occurs in mesic deciduous forests in the eastern United 
States from the high elevations of Virginia to Maine 
(DeMarco and Cognato 2015). Across their distribu-
tion, mean annual temperature ranges from 5 to 14 °C, 
but leaf litter temperatures in the summer can be as high 
as 40 °C, while below-ground temperatures may remain 
at 20 °C (Lubertazzi 2012). Colonies are comprised of 
roughly 180–1000 individuals that nest within the soil and 
coarse woody debris (Lubertazzi 2012). Foragers collect 
and disperse seeds containing elaiosomes (Warren et  al. 
2011), which provide the colony with a nutritional benefit 
(Morales and Heithaus 1998; Clark and King 2012).

Over the last 40 years, elevational limits have shifted 
upwards at the warm edge of their geographical range, 
suggesting that contemporary environmental change may 
already be affecting local populations (Warren and Chick 
2013). Seed collection and dispersal by A. picea are sen-
sitive to soil surface temperatures (Warren et  al. 2011; 
Stuble et al. 2014) and soil moisture (Warren et al. 2010). 
Increasing temperatures have also led a phenological mis-
match with ant-dispersed seed plants, as well as increased 
competitive pressure from more thermophilic native and 
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(mean = 0 and variance = 1) as a measure of size-corrected 
dry mass. Head width was measured as the maximum dis-
tance in mm (to the nearest 0.01) between the eyes using 
the ImageJ software.

Measuring thermal tolerance

We used a static heat-shock protocol (Terblanche et  al. 
2011) to avoid the confounding issue of ongoing desic-
cation associated with a slow ramping protocol (Rezende 
et al. 2011). Preliminary trials revealed that 40.5 °C yielded 
KD times under an hour and that ants are able to recover 
from and survive for at least a few days. For each set of 
ten nest-mate workers associated with each timepoint and 
treatment (see pre-treatments above), pairs of randomly 
selected workers were placed in five separate 5mL glass 
screw-cap vials. Three of the five vials were heat shocked 
by fully submerging the vial at 40.5 °C in a pre-set Thermo 
Neslab EX17 heating water bath, while the remaining 
two vials were simultaneously held at room temperature 
(25 °C). Heat-shocked ants were observed continuously at 
a temporal resolution of roughly 10 s until KD, defined as 
loss of activity (Terblanche et al. 2011). To avoid bias, we 
measured KD times without prior knowledge of the treat-
ment groups.

Measuring the HSR

For the subset of colonies that we sampled to measure the 
HSR, the ants were exposed to identical heat-shock and 
control conditions as those in the thermal tolerance assay, 
but were removed at 25 min and flash-frozen in liquid nitro-
gen and stored at −80 °C. Ants were sampled regardless of 
KD status, and preliminary analyses showed that ants were 
able to induce hsp70 and hsp40 at the 25 min mark.

For each gene expression sample, two of the four 
flash-frozen ants were pooled and homogenized in a bul-
let blender homogenizer (Next Advance Inc., USA) at top 
speed (10) with 1.4 mm zirconium silicate beads (Quack-
enbush Co., Inc, USA). RNA was isolated with RNAzol 
(Molecular Research, USA) and then purified with the 
RNeazy Micro Kit (Qiagen, USA), both following the man-
ufacturers’ instructions. 100 ng of RNA was converted to 
cDNA with the High-Capacity cDNA Reverse Transcrip-
tion Kit (Life Technologies, USA) following the manufac-
turer’s instructions.

The gene expression patterns of hsp70 (hsc70-4  h2 
orthologue) and hsp40 were quantified using previously 
developed primers (Nguyen et  al. 2016) with RT-qPCR 
on a StepOnePlus instrument (Applied Biosystems, USA). 
Each sample was run in triplicate in 20 μL reactions com-
prised of 2 ng of template, 250 nM of forward primer and of 
250 nM reverse primer, and 1× Power SYBR® PCR master 

mix (Life Technologies, USA). Reactions were incubated at 
95 °C for 2 min and then underwent 40 cycles of 95 °C for 
15 s followed by 60 °C for 60 s. Amplicon specificity was 
assessed with a melt-curve analysis. We used the geometric 
mean of ef1β and gapdhas house-keeping genes, which had 
the lowest measure of variation according to NormFinder 
(stability = 0.23; Andersen et  al. 2004). We used 2−∆∆CT 
as the measure of basal gene expression and fold induction 
under heat shock (Livak and Schmittgen 2001). For basal 
gene expression, 2−∆∆CT was calculated relative to time and 
colony-matched controls (water-plugged treatment or fed 
treatment). Fold induction of heat-shocked ants was calcu-
lated relative to time and colony-matched controls (room 
temperature, 25 °C).

Statistical analyses

All statistical analyses were performed in R (version 3.2; R 
Core Team 2016). In all of our statistical analyses, colony 
was treated as an independent block for estimating treat-
ment effects; including colony as a random effect achieved 
similar results and we present only the findings from fixed 
effects models. Survival was analyzed with a GLM, which 
fits a logistic relationship between the proportion of indi-
viduals surviving and time (hours or days). Lethal time at 
50% (LT50) was estimated from GLM-fitted models with 
the dose.p() function in the MASS package. We deter-
mined the effect of time, treatment, and time × treatment 
interaction on KD time or Hsp gene fold induction with an 
ANCOVA. To avoid over-fitting statistical models, we used 
a backwards AIC selection criterion with the stepAIC() 
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with most water loss occurring in the first hour. With heat 
shock, the KD time of desiccated ants was reduced within 
the first hour by 6% compared to controls (F1,58 = 25.21, 
p < 0.001; Table  1) and did not decrease further with 
through time (Fig. 1
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Fig. 2   Effect of desiccation 
(dark gray) on hsp70 and 
hsp40 gene expression. a, c 
Show basal gene expression 
between control and desic-
cation treatments. b, d Show 
the extent of fold induction 
of HS relative to non-HS ants 
between control and desic-
cation treatments. For each 
treatment and timepoint, there 
were 4–5 colony-level replicates 
and error bars represent ± 1 
standard error of the mean. 
For basal gene expression, 
2−∆∆CT was calculated relative 
to time and colony-matched 
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(Terblanche et  al. 2011). In fact, with sufficient recovery 
time between these two stressors (Bubliy et  al. 2012b) or 
slow application of desiccation (Benoit et al. 2010), desic-
cation conferred cross tolerance against heat stress.

Dehydration can either enhance or inhibit thermal 
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starvation was associated with transient increases in basal 
Hsp gene expression, and starved and fed ants invested sim-
ilarly in Hsp gene up-regulation in response to heat stress 
(Fig.  4), suggesting that allocation of energy to protein 
protection is not impacted under low-resource conditions. 
As with desiccation, starvation-induced increases in basal 
Hsp gene expression at early and late timepoints were not 
associated with increases in KD time (Fig. 4a, c). It is pos-
sible that other molecular pathways that contribute to cop-
ing with stress that were not measured here, such as dam-
age repair, redox regulation, and energy metabolism, are 
depressed by starvation and outweigh the slight increase in 
the Hsp response (Zinke et al. 2002; Kültz 2005).

Taken together, the results of this study suggest that 
single-stressor assays may not be a reliable method for 
estimating thermal tolerance, and thus the capacity to with-
stand additional warming. Future climate change is likely 
to impose simultaneous combinations of environmental 
stressors such as temperature, desiccation, and starvation. 
Each of these is likely to impose stress on individual and 
colony-level performance and elicit physiological defenses; 
however, in addition to their independent effects, their 
interaction has the potential further reduce temperature 
tolerances. To improve species forecasts, models of physi-
ological responses to climate change should account for 
these diverse sources of stress (Terblanche et al. 2007).
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