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bank (Golley 1993, Bascompte and Jordano 2014).
The application of network theory has provided a
formal, mathematical framework to approach
systems (Proulx et al. 2005, Bascompte and
Jordano 2014) and led to the development of
network ecology (Patten and Witkamp 1967,
Borrett et al. 2014, Poisot et al. 2016b).

Network ecology can be defined as the use of
network models and analyses to investigate the
structure, function, and evolution of ecological
systems at many scales and levels of organization
(Borrett et al. 2012, Ekl€of et al. 2012). The influx
of network thinking throughout ecology, and
ecology’s contribution to the development of
network science highlight the assertion that
“networks are everywhere” (Lima 2011). And, as
one would expect, the field has grown rapidly,
from 1% of the primary ecological literature in
1991 to over 6% in 2017 (Fig. 1A). Some examples
include the following: applying network theory
to population dynamics and spread of infectious
diseases (May 2006); description and analysis of
networks of proteins in adult organisms (Stumpf
et al. 2007) or during development (Hollenberg
2007); expanding classical food-web to include
parasites and non-trophic interactions (Ings et al.
2009, K�efi et al. 2012); investigating animal move-
ment patterns (L�ed�ee et al. 2016) and the spatial
structure of metapopulations (Holstein et al.





methods based on multivariate, correlative
approaches (Legendre et al. 2012). While some
approaches to studying subsets of species incor-
porate the underlying pattern of direct and indi-
rect links (e.g., modules [sensu Holt 1997, Holt
and Hoopes 2005]), the majority do not. Such
limitations repeatedly have led to calls for the
application of “network thinking” to ecological
questions (e.g., Patten and Witkamp 1967, Urban
and Keitt 2001, Proulx et al. 2005, Ings et al.
2009, Golubski et al. 2016, Jacoby and Freeman
2016, QUINTESSENCE Consortium et al. 2016).
There are now many resources for learning about
network ecology and network theory in general,
and we point the reader in the direction of excel-
lent reviews in this area (Proulx et al. 2005,
Bascompte and Jordano 2007, Ings et al. 2009,
Borrett et al. 2012, Brandes et al. 2013) and more
comprehensive introductions (Brandes and
Erlebach 2005, Newman 2010, Estrada 2015).

Network ecology employs network theory to
quantify the structure of ecological interactions.
All networks consist of sets of interacting nodes
(e.g. species, non-living nutrient pools, habitat
patches) whose relationships are represented by
edges (e.g., nutrient or energy transfers, pollina-
tion, movement of individuals). Conceptually, a
network is a set of things or objects with connec-
tions among them. Stated mathematically, a
network is a generic relational model comprised
of a set of objects represented by nodes or
vertices (N) and a set of edges (E) that map one
or more relationships among the nodes, G = (N,
E). A canonical ecological example of a network
is a food-web diagram, in which the nodes repre-
sent species, groups of species, or non-living
resources, and the edges map the relationship
who-eats-whom.

The analysis of networks is inherently hierar-
chical, ranging from the entire network down to
individual nodes and edges. Depending on the
characteristics and level of detail of the informa-
tion provided for a given model, there is a large

number of network analyses and metrics that can
be used to characterize the system at multiple
levels (similar to Hines and Borrett 2014, Wasser-
man and Faust 1994), including: (1) the whole-
network level (i.e., the entire network), (2) the
sub-network level (i.e., groups of two or more
nodes and their edges), and (3) the individual
node or edge level (Fig. 2).

Network-level metrics integrate information
over the entire set of nodes and edges. For
example, the number of nodes (e.g., the species
richness of a food-web) and the density of con-
nections or connectance are both network-level
statistics used to describe the overall complexity
of a network and have been investigated by
ecologists for over 40 yr (May 1972, Allesina and
Tang 2012).

Sub-network-level analyses focus on identify-
ing specific subsets of nodes and edges. There
are a variety of groups that have different names
(e.g., module, motif, cluster, clique, environ) and
different methods for measurement. Sub-
networks often represent more tractable and
meaningful units of study than individual nodes
and edges on the one hand or entire networks on
the other. For example, in landscape and popula-
tion ecology, the preferential movement of indi-
viduals and genes (edges) between habitat
patches (nodes) has implications for conservation
of populations and the design of preserves
(Calabrese and Fagan 2004, Holt and Hoopes
2005, Fletcher et al. 2013). Also, both nodes and
edges can be divided into classes. An example of
this is the bipartite graph, in which interactions
occur primarily between, rather than within,
each class or “part” of the community. A bipar-
tite network has only two classes of nodes, such
as in a pollination network in which the commu-
nity is divided into plants being pollinated and
insects that do the pollination (Petanidou et al.
2008). In this network, edges representing polli-
nation visits can only map between two nodes in
the different classes.

ecology has grown rapidly since the turn of the last century but has been developing in isolated sub-fields. (A)
Plot showing the increase in “network ecology” keywords in the literature from 1991 to current (updated using
search developed by Borrett et al. [2014]). (B) Contour plot of common topics in network ecology with peaks
indicating clusters of related topics. The regions are labeled with the most common terms found in the clusters.
From Borrett et al. (2014), reproduced with permission.

(Fig. 1. Continued)
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Metrics at the individual node or edge level
quantify differences in relative importance.
Whether we are interested in an individual or
species that transmits disease, species whose
removal will result in secondary extinctions, or
key habitat patches that connect fragmented land-
scapes, identifying important nodes is a critical
component of network analysis. Another type of
node or edge-level metric classifies nodes or edges
according to their roles within a network. This
classification can use information from differing
levels. Additionally, nodes and edges can have
variable characteristics. Edges can be weighted



Table 1. Ecological network metric summary and classification.

Sub.discipline Level Metric Concept References

General W Density The proportion of possible edges that
are actually associated with nodes;
called Connectance in Food-web
ecology

General N Centrality Multiple ways to characterize the
relative importance of nodes

Wasserman and Faust
(1994)

General N Degree Number of edges connected to a
given node, which is a type of local
centrality

General N Eigenvector
centrality

Global centrality metric based on
number of walks that travel through
a node

Bonacich (1987)

General W Centrality
distribution

Shape of the frequency distribution of
edges among nodes

Barab�asi and Albert
(1999); Dunne et al.
(2002)

General W Centralization The concentration (vs. evenness) of
centrality among the nodes

Freeman (1979)

General W Graph
diameter

The longest path between any two
nodes in a graph

Barab�asi et al. (2000);
Urban and Keitt (2001)

General W Modularity Degree to which edges are
distributed within rather than
between distinct sets of nodes

Newman (2010)

General G Motifs Small sets of nudes with similar
distributions of edges

Milo et al. (2002)

General W Link density Average number of edges per node Martinez (1992)
Community N Temperature Measures the nestedness of a

bipartite network
Ulrich and Gotelli
(2007)

Community W Co-occurrence Degree of overlapping spatial or
temporal distributions of species
relative to a null model

Gotelli (2000)

Community N Indicator
species

The degree to which the abundance
of a taxonomic group responds to an
environmental gradient

Community W Nestedness The degree to which interactions can
be arranged into subsets of the
larger community

Community W Evenness Deviation of the distribution of
observed abundances relative to an
even distribution among taxonomic
groups in a community

Community W Diversity Distribution of abundances among
taxonomic groups in an observed
community

Community W Richness The number of taxonomic groups in a
community

Community W Stability The change in the abundances of
taxonomic groups across a set of
observations

Food-web N Removal
importance

The degree to which removal of a
compartment or species produces
subsequent removals in the
ecosystem

Borrvall et al. (2000);
Dunne et al. (2002);
Ekl€of and Ebenman
(2006); Sol�e and
Montoya (2001)

General N Connectance Proportion of realized out of possible
edges

Pimm (1982); Vermaat
et al. (2009)

Food-web G Food-chain
length

The number of feeding relationships
among a set of compartments in a
food-web

Post et al. (2000);
Ulanowicz et al.
(2014)

Ecosystem W Finn cycling
index

Degree to which matter or energy
passes through the same set of
compartments

Finn (1980)
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been called network aggradation (Jørgensen et al.
2000). In economics, average path length is
known as the multiplier effect (Samuelson 1948).

Another kind of redundancy is the creation
and use of multiple statistics that measure the
same or very similar network aspects. A clear
example of this is inherent in the proliferation of
centrality measures to indicate node or edge
importance. Network scientists have shown that
many centrality metrics are correlated (Newman
2006, Jord�an et al. 2007, Valente et al. 2008).
Likewise, Borrett and Osidele (2007) found that
nine commonly reported ecosystem network
analysis metrics covaried in 90 plausible parame-
terizations of a model of phosphorus biogeo-
chemical cycling for Lake Lanier, Georgia, but
that all these metrics were associated strongly
with only two underlying factors. However, even
a perfect correlation does not mean that two met-
rics have identical properties, and they still may
diverge in different models. Therefore, it is
important to have mathematically based compar-
isons of metrics (Borgatti and Everett 2006,
Borrett 2013, Kazanci and Ma 2015, Ludovisi and

Scharler 2017). It is incumbent on network ecolo-
gists to establish clearly the independence and
uniqueness of the descriptive metrics used.

From the perspective of the broader field of

https://figshare.com/s/1bf1a7e0a6ee3ac97a4b
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et al. 2003). For example, randomized networks
have been used to link motifs (Milo et al. 2002) to
network assembly (Baiser et al. 2016), stability
(Allesina and Pascual 2008, Borrelli et al. 2015),

and persistence in food-webs (Stouffer and
Bascompte 2010).

In addition to the random matrix approaches
of null and ER models, there are other, more

Box 1

Benchmarking Ecological Models

The most basic test is to feed the algorithm a set of “random” matrices to make sure that the
frequency of statistically significant results is no greater than 5%. Otherwise, the algorithm is
vulnerable to a Type I statistical error (incorrectly rejecting a true null hypothesis). However,
specifying a matrix produced by random sampling errors is not so easy. By definition, if a null
model algorithm is used to generate the random matrices, then no more than 5% of them should
be statistically significant (unless there were programming errors). For binary matrices, two log-
normal distributions can be used to generate realistic heterogeneity in row and column totals,
while still maintaining additive effects for cell occurrence probabilities (Ulrich and Gotelli 2010).
“Structured” matrices are needed to test for Type II errors (incorrectly accepting a false null
hypothesis), and these require a careful consideration of exactly what sort of pattern or mecha-



complex algorithms that are used to generate
structured matrices. Perhaps one of the best
known in network theory is the Barabasi-Albert
(BA, Barab�asi and Albert 1999) model, which
adds nodes and edges to a growing network
with a greater probability of adding edges to
nodes with a higher degree. The BA algorithm is
similar to ecological network algorithms that
generate non-random structure, because of either
direct influence or similar processes operating in
systems of interest. Some of these models include
processes of “preferential attachment” in which
organisms tend to interact with the same, com-
mon species. Food-web modeling algorithms
also have been developed that use a trait-based
approach (e.g., Allesina and Pascual 2009), con-
sumer–resource models (Yodzis and Innes 1992),
niches (Williams and Martinez 2000), cyber-
ecosystem algorithms (Fath 2004), and cascade
models (Cohen and Łuczak 1992, Allesina and
Pascual 2009, Allesina and Tang 2012).

The statistical behavior of some models and
metrics can be understood analytically. For
example, the networks generated by the BA
algorithm display degree distributions that
approximate a power-law distribution, like many
real-world “scale-free” networks (Albert et al.
2002). If the network is sparse (i.e., [K � N2]),
the degree distribution of the network should fol-
low a Poisson distribution. However, as new
models and metrics are introduced, new bench-
marking should be done and compared to previ-
ous results. Newman et al. (2016) is one example
of how benchmarking can be used for investigat-
ing processes operating on ecological networks.
Ludovisi and Scharler (2017) advocate the same
approach for the analysis of network models in
general. The benchmark (Eugster and Leisch
2008) package in R (R Core Team 2017) is a gen-
eral algorithm-testing software package that pro-
vides a useful starting point.

REPRODUCIBILITY: OPEN-DATA, OPEN-SOURCE,
AND PROVENANCE

As analyses of network models increase in com-
putational intensity, there is a concomitant
increase in the need for new tools to track and
share key computational details. This need is
compounded when models incorporate data from
multiple sources or analyses involve random

processes. The combination of the volume of data
and computational intensity of studies of ecologi-
cal networks further increases the burden on
ecologists to provide information needed to ade-
quately reproduce data sets, analyses, and results.
As the sharing and reproducibility of scientific
studies are both essential for advances to have
lasting impact, finding easier, faster, and generally
more convenient ways to record and report rele-
vant information for ecological network studies is
imperative for advancing the field.

Sharing data and open-source code have
become established in ecology, and network ecolo-
gists are now producing more network models
and data (e.g., Fig. 1A). These include not only
ecological interaction networks, but also an influx
of other relevant networks, including ecological
genomic networks generated by next-generation,
high-throughput sequencing technologies (Lang-
felder and Horvath 2008, Zinkgraf et al. 2017).
There are now multiple web-accessible scientific
databases (e.g., National Center for Biotechnology
Information [NCBI], Data Dryad, Dataverse) and
at least four databases have been constructed
specifically to curate ecological network data:
including “Kelpforest” (Beas-Luna et al. 2014),
“The Web of Life” (Fortuna et al. 2014), “Mangal”
ecological network database (Poisot et al. 2015),
and the “Interaction Web Database” (https://www.
nceas.ucsb.edu/interactionweb/resources.html).

The increase in ecological network data is
linked to an increasing rate of shared analytical
code and other open-source software. It is now

https://www.nceas.ucsb.edu/interactionweb/resources.html
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the ecosystem network analysis literature (Borrett
and Lau 2014, Lau et al. 2015).

Although ecology has long had a culture of
keeping records of important research details,
such as field and laboratory notebooks, these
practices put all of the burden of recording
“metadata” on the researcher. Manual record-
keeping methods, even when conforming to
metadata standards (e.g., Ecological Markup Lan-
guage [EML], see Boose et al. 2007), do not take
advantage of the power of the computational
environment. Data-provenance methods aim to
provide a means to collect formalized informa-
tion about computational processes, ideally in a
way that aids the reproducibility of studies with
minimal impact on the day-to-day activities of
researchers (Boose et al. 2007). These techniques
have been applied in other areas of research and
could provide an effective means for document-



benchmarking. Multi-trophic networks provide a
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