










because oviposition represents an increase in  ‘ births ’  of the 
larval population (which itself does not reproduce in a meso-
cosm). Female oviposition choice in Culicidae is sensitive 
to the presence of predators (Kifl awi et al. 2003, Blaustein 
et al. 2004), conspecifi cs (Edgerly et al. 1998), and habi-
tat nutrient quality (Reiskind and Wilson 2004, Mokany 
and Mokany 2006). Because predator density did not vary 
among our treatments, nutrient concentration and conspe-
cifi c abundance probably increased oviposition rates in low 
water tubs. Th e lower mean water means increased nutrient 
concentrations because the detritus type and amount was 
held constant. Once those treatments developed an initial 
population, females may have been attracted to mesocosms 
with high densities of conspecifi c larva as an indicator of 
future larval success (Edgerly et al. 1998). Culicidae abundance 
also varied with spatial position, temperature and dissolved 
O 2  concentration in mesocosms, which may refl ect direct 
and indirect eff ects of our treatments on larval abundance 
and female oviposition choices. 
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water level (Fig. 2d). In contrast to the results for Culici-
dae, none of the measured covariates aff ected Chironomidae 
abundance. Instead, the abundance levels were driven only 
by the two experimental treatments, suggesting that, that 
post-colonization processes related directly to water level and 
variability were most important for Chironomidae. 

 Four caveats apply to our experimental study. First, 
the sampling regime and population growth equations we 
used do not allow us to infer the precise mechanisms of 
density-dependence, because we cannot distinguish between 
eff ects of migration from those of birth and death. Second, 
our mesocosms excluded amphibians and their larval 
stages, which act as important predators in many aquatic 
ecosystems (Wilbur 1987, Morin et al. 1988, Wilbur and 
Fauth 1990). We are currently running long-term experi-
ments with larger experimental ponds that allow for amphib-
ian migration. Finally, as in previous studies that used in 
situ sampling of invertebrates in the fi eld (Gunnarson 1983, 
Caley 1995), it was necessary to lump species and genera 
into insect families. Th ere are many examples of species-
level diff erences among Culicidae (Spencer et al. 2002, 
Blaustein et al. 2004, Ellis 2008, Juliano 2009), so that 
density-dependence might be masked by pooling data at the 
family level. However it is diffi  cult to see how pooling could 
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