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imperfect detection. Instead, most methods assume
that the absence of a species from a sampling period
represents a ‘true’ zero, and not a detection error
(Royle & Dorazio 2008). Most procedures also ignore
species that may have been present in a region, but
were never detected in any of the samples (Colwell &
Coddington 1994).

In this study, we develop new methods for quantify-
ing temporal trends in species abundances that
account for errors in detection of individuals. Our
methods are appropriate for analysing species-specific
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were true by comparing the observed TC to the
histogram of simulated TC values.

Because the results are potentially sensitive to the
assumption of simple linear trends in yij, we fit two
alternative regression models based on log–log and
log-linear transformations of ( yij þ 1) and tj. The
same transformations were applied to the real and
the simulated data. Although these alternative
models incorporated nonlinear trends in species tem-
poral trajectories, the transformations had no
qualitative effect on the outcome of the null model
tests. Therefore, we present results only from analyses
of the untransformed data fit with a linear trend line.
(c) Undetected species

The construction of the null matrix is similar to a
simulation of rarefaction (Sanders 1968; Hurlbert
1971), in which a small assemblage is simulated by
random draws of subsamples of nj individuals from
the larger sample of N. However, in rarefaction,
sampling is done without replacement (Simberloff
1978). Because our null model treats the source pool
as a permanent stationary distribution, we sampled
from it with replacement. In practice, the results will
not differ unless the sample sizes are so small that nj
is a relatively large fraction of N, which is not the
case for these datasets. Rarefaction also conditions
on nj, the observed count in a particular sample,
whereas our multinomial model conditions on N,
the total number of individuals.

This procedure implicitly addresses detection error
because species (especially rare ones) that are present
in the aggregated collection N may not be represented
in any particular sample nj. In some null assemblages,
species that were very rare in the original dataset may
be missing from all nj samples. Because biodiversity
sampling is notoriously incomplete, there are also
likely to be rare species in the assemblage that were
never encountered in the original samples (Colwell &
Coddington 1994). We expanded our null model to
incorporate these undetected species. We first
estimated the minimum number of undetected
species, Ŝ using a bias-corrected version of the familiar
Chao2 estimator (Chao 1984; eqn (2.4) in Colwell
2009)

Ŝ ¼ T � 1

T

� �
Q1ðQ1 � 1Þ
2ðQ2 þ 1Þ

� �
; ð2:11Þ

where Q1 is the number of species represented in
exactly 1 time period (‘uniques’), Q2 is the number
of species represented in exactly two time periods
(‘duplicates’) and T is the number of samples. The
Chao2 index estimates the number of undetected
species in the entire assemblage, not the number that
may be undetected in any single sample. For the
stream fish matrix, the estimated number of unde-
tected species (rounded to the nearest whole integer)
was 16. For the insect matrix, sampling was restricted
to nine common species, and the estimated number of
undetected species was 0.

Once the number of undetected species was esti-
mated, it was necessary to assign them each a
relative abundance si, so they could be included in
the simulation. Estimating these si values would
require knowledge of the precise form of the species
abundance distribution, a long-standing unsolved pro-
blem in ecology (McGill et al. 2007). As a simplifying
first approximation, we assumed that si for each unde-
tected species was equal to 0.5.si for the least abundant
species observed in the assemblage. The reasoning is
that if any of these undetected species occurred at a
frequency greater than this, they would probably
have been detected at least once in the original
sample. For the stream fish data, si for each of the 16
undetected species was set at 3.414135 � 1025.
Because many of the undetected species are probably
much more rare than this, our procedure allows for
the greatest possible influence of undetected species.
Nevertheless, the results for the stream fish matrix
were identical with and without the inclusion of unde-
tected species. However, because the observed number
of species is always a biased under-estimator of true
species richness, we present the full analyses here
with the undetected species included in the null
model.

If the observed value of TC is larger than those of
950 of the 1000 simulated TC values (p , 0.05,
one-tailed test), then the temporal trends in the set
of observed species are more heterogeneous than can
be accounted for by the null model: at least some
species are either increasing or decreasing more rapidly
than would be expected from sampling effects and
undetected species. The null model was programmed
and implemented in the statistical language R
(R Development Core Team 2008; see electronic
supplementary material, appendix A).
(d) Hierarchical model of trend in abundances
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of Nij, with the level of bias depending on the magni-
tude of pij, the unknown probability of capture for
individuals of species i.

In the absence of replicated observations, we cannot
estimate temporal changes in both Nij and pij. There-
fore, we assume that capture probabilities vary
among species but not among surveys (i.e. we
assume pij ¼ pi). Even with this simplifying assump-
tion, the hierarchical model composed of equations
(2.12)–(2.14) contains more parameters than can be
estimated from the data. To solve this problem, Nij

may be eliminated from the model by integrating the
joint distribution of yij and Nij. This integration can
be done analytically to obtain the following margina-
lized version of the hierarchical model:

yij jpi; li0; ri � Poissonðpili0 expðritjÞÞ: ð2:15Þ

Note that this model may be viewed conceptually as a
Poisson regression model. For example, let mij denote
the Poisson mean for yij. The logarithm of mij is a
linear combination of the marginal model’s parameters

logðmijÞ ¼ logðpiÞ þ logðli0Þ þ ritj : ð2:16Þ

However, pi and li0 are not identifiable parameters
in equation (2.16) (i.e. both parameters cannot be esti-
mated); therefore, we combine these parameters into a
common regression intercept parameter (say, ai ¼
log(pili0)) to obtain

logðmijÞ ¼ ai þ ritj : ð2:17Þ

From this equation, the Tobservations, yi1; yi2; . . . ; yiT ,
can be used to estimate the parameters ai and ri. We
are interested primarily in the latter parameter ri,
which denotes the trend in abundance of species i;
however, our formulation of the intercept parameter
ai reveals explicitly the combined roles of mean abun-
dance and capture probability in the model.

The model specified by equations (2.15) and (2.17)
can be fitted to each species separately. However,
doing so may produce estimates of trend that are
unstable or highly imprecise for species whose abun-
dance appears to be low (as indicated by counts that
contain several zeros and ones). Therefore, we
extend the model as follows:

ri jb;s � normalðb;s2Þ ð2:18Þ

where b denotes the average trend in abundance
among species in this assemblage and s denotes the
level of variation in ri values among species. This
distributional assumption allows the counts of all
species to be analysed jointly so that information
associated with species of moderate or high abundance
can be used to stabilize the estimates of trend for
species of low apparent abundance. Nevertheless,
even with this assumption, there were not enough
data to reliably estimate trends for very rare species
that were represented by less than 10 individuals in
the entire survey (25 of 55 stream fish species, and
two of nine insect species).

Equation (2.18) implies an exchangeability of trend
parameters among species. This exchangeability for-
malizes the notion that although abundances may be
increasing, decreasing or constant for any particular
species, each is also a member of a common assem-
blage. We expect that the temporal trends of the
species in the stream fish assemblage are more similar
to one another than they are to, say, the temporal
trends of the species in the grassland insect assem-
blage. A restricted version of this model that
corresponds to the null model assumes an identical
growth rate ri ¼ b for all species, so that s ¼ 0. We
can fit this restricted model and compare it with the
unrestricted model to assess whether the data support
the null hypothesis that all species abundances have an
identical trend.

(e) Method of estimation

The hierarchical model described by equations (2.15),
(2.16) and (2.18) may be fitted by maximizing the
likelihood function obtained by integrating away the
latent trend parameters. In our situation, however,
this approach is counter-productive. In addition to
the minor technical challenges of computing the inte-
grals numerically, the trend parameters ri are the
quantities of primary scientific interest. Estimates of
these parameters and their uncertainties are actually
needed to solve the inference problem. We therefore
adopt a Bayesian approach to inference, which allows
every parameter in the model to be estimated directly,
including the species-specific trends in abundance.

In a Bayesian analysis, all inferences are based on
the joint posterior distribution of model parameters.
In our case the unnormalized, probability density
function (pdf ) of this distribution is

pða; r;b;sjY Þ/ pðb;s;aÞ
YS
i¼1

gðrijb;sÞ

�
YT
j¼1

f ðyij j expðai þ ritjÞÞ; ð2:19Þ

where a ¼ ða1; . . . ; anÞ0; r ¼ ðr1; . . . ; rnÞ0, and
Y ¼ ð y1; . . . ; ynÞ0. Here, g(.jb, s) denotes the pdf of
a normal distribution with mean b and variance s2,
f(.jmij) denotes the probability mass function of a
Poisson distribution with mean mij, and p(b, s, a)
denotes the pdf of the prior distribution of the
parameters b, s, and a.

The posterior pdf cannot be written in closed form
owing to the analytically intractable integrals in the
normalizing constant (not shown in equation (2.19)).
Therefore, we estimated the model’s parameters using
Markov chain Monte Carlo algorithms (Robert &
Casella 2004) to obtain an arbitrarily large sample of
the joint posterior distribution. Specifically, we fit the
model using the WinBUGS software (Lunn et al.
2000
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‘burn-in’, and every fifth draw in the rest of each chain
was retained to form the posterior sample. Conse-
quently, these calculations yielded a posterior sample
of 20 000 draws, which was used to compute estimates
of the model’s parameters and their 95% credible
intervals (see electronic supplementary material,
appendix B).
3. RESULTS
(a) Null model analysis

For the stream fish data, there was a non-significant
decreasing trend in total abundance (figure 1),
caused primarily by extremely high abundances in
the November 1966 sample (n8 ¼ 5344 individuals).
For the null model analysis, this decreasing trend
leads to the expectation of negative slopes for individ-
ual species, with a moderate amount of variation
among species (figure 2a). However, the observed
slopes were much more heterogeneous than this expec-
tation: several species showed sharply increasing or
decreasing trend lines (figure 2b), and the observed
TC index was larger than that of all 1000 simulated
assemblages (table 1).

For the insect data, there was a marginally non-
significant increasing trend in total abundance
(figure 3), with systematically greater abundances
during the final sampling years. For the null assemblages
created from this matrix, most species had increasing
trend lines (figure 4a). However, the observed slopes
were again much more heterogeneous than expected
(figure 4b). As with the stream fish data, the observed
heterogeneity among slopes (TC) was greater than
that of any of the simulated assemblages (table 1).

(b) Trends in abundances

For the stream fish data, the hierarchical model ident-
ified seven species with significant increases in
abundance, 17 species with significant declines in
abundance and six species with no significant trend
(figure 5). A negative estimate of average trend,
b̂ ¼ �0:152 (95% credible interval: (20.289,
20.024)), also indicates that species with declining
abundances outnumbered those with increasing abun-
dances. There is little doubt that trends in population
abundance differed substantially among species. The
posterior distribution of s (figure 6a) provides
virtually no support for the hypothesis that s ¼ 0.

For the grassland insect data, the hierarchical
model identified two species with significant increases
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(Grossman & Sabo 2010). The decreasing trends in
abundance of many stream fish species (figure 5) are
consistent with a shifting baseline scenario, but the
causes of these declines are still unknown.

The results of both the null model and the hierarch-
ical model are potentially sensitive to the functional
form that is used to describe temporal trends. For the
null model analysis, the results for these datasets
were the same when the trends were fit with linear,
semi-logarithmic, or log–log transformations of the
original data. The estimated heterogeneity among
species in temporal trends does not seem to be sensitive
to the fitting procedure, perhaps because deviations
caused by extreme sample numbers (such as the high
counts in the stream fish dataset in 1966) are also incor-
porated into the pattern in the null assemblages. Both
the null model and the hierarchical model assume
that species are independent of one another. However,
it is unclear how the violation of this assumption
(from strong species interactions) would systematically
affect the estimates of temporal trends in abundance.

Because the hierarchical model is being used for
parameter estimates of change (rather than just a
simple dichotomous null model test), it is potentially
more sensitive to violation of its assumptions. As we
noted, one important assumption in this model is
that capture probabilities are constant through time.
Although this assumption may not be true, it probably
matches the perspective of most field biologists, who
typically assume that long-term monotonic changes
in species counts with standardized sampling methods
primarily reflect changes in abundance, rather than
changes in detection or capture probabilities.

If species-specific capture probabilities are not con-
stant, the magnitude of the deviations between
observed and expected counts may be inflated. As
long as these deviations do not vary systematically
with time, the point estimates of trend will not be
affected, although the credible intervals may be too
narrow. Alternatively, if the deviations between
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with time, say changing from positive to negative
values, the trend estimates will be very sensitive to an
incorrect assumption of constant capture probability.
For the datasets we analysed, there was no evidence
of a systematic lack of fit (figure 8).
In the hierarchical model, the assumption of con-
stant sampling probabilities was necessary only
because of the extremely simple and unreplicated
structure of the data matrix. With replication, it may
be possible to estimate parameters for temporal
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trends in both abundance and detection probabilities.
For example, the KBS insect data actually consist of
weekly sticky trap counts collected from six replicated
plots. Rather than pooling the data as we have done in
this analysis, the individual trap records could be fit to
a more complex hierarchical model (Royle & Dorazio
2008; Kery et al. 2009). The hierarchical model
could also be expanded to incorporate species-specific
covariates Z (such as body size, geographical range
size, or degree of habitat specialization) that might
be of interest for conservation purposes. Species-
specific covariates could be used to model either the
mean structure of the elements of r in equation
(2.18) or their covariances.
Both the bootstrap test and the hierarchical model
assume that changes in abundance through time are
monotonic. If species show more complex patterns of
temporal change (such as periodic fluctuations),
these could be accommodated by fitting polynomial
or sine functions to the time series. However, at least
for these datasets, diagnostic analysis of residuals indi-
cated little evidence for departures from linearity over
the time periods that were sampled. Moreover, a
monotonic function is appropriate for very short data
series such as these (T ¼ 15 samples for stream fishes
and T ¼ 14 samples for grassland insects).

Finally, the frequent occurrence of rare species in
natural assemblages continues to pose statistical

http://rstb.royalsocietypublishing.org/


http://dx.doi.org/doi:10.1890/07-2147.1
http://dx.doi.org/doi:10.1890/07-2147.1
http://dx.doi.org/doi:10.1034/j.1600-0706.2000.910209.x
http://dx.doi.org/doi:10.1034/j.1600-0706.2000.910209.x
http://rstb.royalsocietypublishing.org/


Colwell, R. K. 2009 Estimates: statistical estimation of species
richness and shared species from samples, v. 8.2. User’s
Guide and application published at: http://purl.oclc.org/

estimates.
Colwell, R. K. & Coddington, J. A. 1994 Estimating terres-

trial biodiversity through extrapolation. Phil.
Trans. R. Soc. Lond. B 345, 101–118. (doi:10.1098/rstb.
1994.0091)

Connell, J. H. & Slatyer, R. O. 1977 Mechanisms of succes-
sion in natural communities and their role in community
stability and organization. Am. Nat. 111, 1119–1144.

Dixon, P. M., Ellison, A. M. & Gotelli, N. J. 2005 Improving

the precision of estimates of the frequency of rare events.
Ecology 86, 1114–1123. (doi:10.1890/04-0601)

Dorazio, R. M., Kery, M., Royle, J. A. & Plattner, M. 2010
Models for inference in dynamic metacommunity sys-
tems. Ecology 91, 2466–2475. (doi:10.1890/09-1033.1)

Dunson, W. A. & Travis, J. 1991 The role of abiotic factors
in community organization. Am. Nat. 138, 1067–1091.

Ellison, A. M. et al. 2005 Loss of foundation species: conse-
quences for the structure and dynamics of forested
ecosystems. Front. Ecol. Environ. 3, 479–486. (doi:10.

1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2)
Fujiwara, M. & Mohr, M. S. 2009 Identifying environmental

signals from population abundance data using multi-
variate time-series analysis. Oikos 118, 1712–1720.
(doi:10.1111/j.1600-0706.2009.17570.x)

Gilks, W. R., Thomas, A. & Spiegelhalter, D. J. 1994 A
language and program for complex Bayesian modelling.
Statistician 43, 169–178. (doi:10.2307/2348941)

Gotelli, N. J. & Colwell, R. K. 2001 Quantifying biodiversity:

procedures and pitfalls in the measurement and compari-
son of species richness. Ecol. Lett. 4, 379–391. (doi:10.
1046/j.1461-0248.2001.00230.x)

Gotelli, N. J. & Graves, G. R. 1996 Null models in ecology.
Washington, DC: Smithsonian Institution Press.

Grossman, G. D. & Sabo, J. L. 2010 Incorporating environ-
mental variation into models of community stability:
examples from stream fish assemblages. In Community
ecology of stream fishes (eds K. Gido & D. Jackson),
Washington, DC: American Fisheries Society.

Grossman, G. D., Moyle, P. B. & Whittaker Jr, J. O. 1982
Stochasticity in structural and functional characteristics
of an Indiana stream fish assemblage: a test of community
theory. Am. Nat. 120, 423–454.

Grossman, G. D., Freeman, M. C., Moyle, P. B. &

Whittaker Jr, J. O. 1985 Stochasticity and assemblage
organization in an Indiana stream fish assemblage. Am.
Nat. 126, 275–285.

Grossman, G. D., Ratajczak, R. E., Crawford, M. K. &

Freeman, M. C. 1998 Assemblage organization in
stream fishes: effects of environmental variation and inter-
specific interactions. Ecol. Monogr. 68, 395–420. (doi:10.
1890/0012-9615(1998)068[0395:AOISFE]2.0.CO;2)

Hurlbert, S. H. 1971 The nonconcept of species diversity: a

critique and alternative parameters. Ecology 52, 577–585.
(doi:10.2307/1934145)

Jones, C. G., Lawton, J. H. & Shachak, M. 1994 Organisms
as ecosystem engineers. Oikos 69, 373–386. (doi:10.
2307/3545850)

Kellogg Biological Station Sampling Protcols 1995 See
http://lter.kbs.msu.edu/protocols/36.

http://purl.oclc.org/estimates
http://purl.oclc.org/estimates
http://purl.oclc.org/estimates
http://dx.doi.org/doi:10.1098/rstb.1994.0091
http://dx.doi.org/doi:10.1098/rstb.1994.0091
http://dx.doi.org/doi:10.1890/04-0601
http://dx.doi.org/doi:10.1890/09-1033.1
http://dx.doi.org/doi:10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
http://dx.doi.org/doi:10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
http://dx.doi.org/doi:10.1111/j.1600-0706.2009.17570.x
http://dx.doi.org/doi:10.2307/2348941
http://dx.doi.org/doi:10.1046/j.1461-0248.2001.00230.x
http://dx.doi.org/doi:10.1046/j.1461-0248.2001.00230.x
http://dx.doi.org/doi:10.1890/0012-9615(1998)068[0395:AOISFE]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9615(1998)068[0395:AOISFE]2.0.CO;2
http://dx.doi.org/doi:10.2307/1934145
http://dx.doi.org/doi:10.2307/3545850
http://dx.doi.org/doi:10.2307/3545850
http://lter.kbs.msu.edu/protocols/36
http://lter.kbs.msu.edu/protocols/36
http://dx.doi.org/doi:10.1038/34166
http://dx.doi.org/doi:10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2
http://dx.doi.org/doi:10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2
http://www.lternet.edu/
http://www.lternet.edu/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://dx.doi.org/doi:10.1046/j.1365-2664.2000.00538.x
http://dx.doi.org/doi:10.1046/j.1365-2664.2000.00538.x
http://dx.doi.org/doi:10.1111/j.1461-0248.2007.01094.x
http://dx.doi.org/doi:10.2307/1312122
http://dx.doi.org/doi:10.1016/S0169-5347(00)89171-5
http://dx.doi.org/doi:10.1016/S0169-5347(00)89171-5
http://dx.doi.org/doi:10.2307/2533401
http://dx.doi.org/doi:10.1038/416389a
http://dx.doi.org/doi:10.1038/416389a
http://dx.doi.org/doi:10.1111/j.1366-9516.2006.00265.x
http://dx.doi.org/doi:10.1111/j.1366-9516.2006.00265.x
http://rstb.royalsocietypublishing.org/

	Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models
	Introduction
	Material and methods
	Data structure
	Null model analysis
	Undetected species
	Hierarchical model of trend in abundances
	Method of estimation

	Results
	Null model analysis
	Trends in abundances

	Discussion
	We thank Anne Chao and two anonymous reviewers for comments that improved the manuscript. N.J.G. was supported by the U.S. National Sciences Foundation (NSF DEB-0541936) and the U.S. Department of Energy (022 821). G.D.G. was supported by the Warnell School of Forestry and Natural Resources and U.S. Department of Agriculture (USDA) Forest Service McIntire-Stennis program grant GEO-00 144-MS. Portions of this work represent a contribution from the Harvard Forest Long-Term Ecological Research Site, supported by NSF 06-20 443. This work was also facilitated by meetings at the Binary Matrices Working Group at the National Institute for Mathematical and Biological Synthesis, sponsored by NSF, the U.S. Department of Homeland S
	REFERENCES




