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We analyzed a simple genetic model of ecological character displacement in a 
fluctuating environment. Character states of two identical, competing species were 
determined by a single-gene, two-allele model. In each generation, the carrying 
capacity of different segments of a uniform resource spectrum fluctuated randomly. 
Inter- and intraspecific exploitation competition reduced litnesses of similar 
genotypes. In contrast to demographic models of niche shift, this genetic model led 
to a high average overlap of species in a variable environment. However, for 
moderate or small environmental fluctuations, character distributions of the two 
species diverged signilicantly and rapidly. Results were nearly identical for a model 
of environmental fluctuations that incorporated resource “crunches.” These models 
were sensitive to the intrinsic rate of increase of the competing species: divergence 
was substantially slower at small values of r. Nevertheless, most simulations of this 
simple genetic model suggest that interspecific competition can lead to significant 
divergence, even in a moderately fluctuating environment. 0 1991 Academic press, Inc. 

The phenotypes of ecologically similar species sometimes diverge in sym- 
patric populations. Character displacement (Brown and Wilson, 1956) 
refers to those cases in which selection for reduced interspecific 

19lead to phenotypes siSection for 19a avoidance of hybrid 
matings may also cause displacement (Bossert, 1963; Levin, 1986), but will 

not be considered here. 
There have been many mathematical treatments of phenotypic 

divergence, and it is useful to distinguish between genetic and demographic 
models. Genetic models of character displacement describe an evolutionary 
shift in the mean and/or variance of phenotypes of competing species (e.g., 
Bulmer, 1974; Crozier, 1974; Slatkin, 1980). Selection favors phenotypes 
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FIG. 1. Average time in generations to reach equilibrium. The average F two standard 
deviations is shown for 100 simulations of the linear fitness function (Eq. (4)) under the model 
of independent resource fluctuations (model 1) (r = 1.0). 

crunch model (model 2) generated overlap means (Fig. 2b) and standard 
deviations (Fig. 3b) that were virtually indistinguishable from those 
generated by the independent fluctuations model (model 1). 

When the central resource was held constant (model 3), overlap showed 
more of an increase with environmental stochasticity, and the four popula- 
tion equations diverged at the highest levels of noise (Fig. 2~). The hyper- 
bolic fitness function (Eq. (6)) generated the largest overlap, and the 
exponential fitness function (Eq. (7)) generated the smallest overlap. The 
standard deviation of overlap was reduced in the central resource crunch 
model and the model of independent fluctuations (Fig. 3~). 

The behavior of these population models was very sensitive to the intrin- 
sic rate of increase, r (Roughgarden, 1975; Turelli, 1978a). r is a measure 
of the responsiveness of the population to changes in carrying capacity 
(Roughgarden, 1975). We simulated Eq. (4) with smaller values of r and 
found that the time to reach equilibrium increased by a factor of roughly 
l/r (Table II). A second consequence of reducing r is that it acts as a scalar 
and also reduces ei, the amount of environmental stochasticity (Feldman 
and Roughgarden, 1975). Thus, at small r, the populations reached a lower 
equilibrium overlap. However, the behavior of the model under the 
different scenarios of environmental fluctuations, and for the four fitness 
functions, was not sensitive to Y. 
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FIG. 3. Standard deviation of overlap as a function of increasing environmental variation. 
Each point is the average of 100 standard deviations calculated for 100 generations after 
equilibrium was tirst reached. Symbols and models as in Fig. 2. 

TABLE II 

Effects of Varying r on the Number of Generations to Equilibrium and the 
Equilibrium Overlap Achieved (Eq. 4) 

r= 1.0 r=o.s r=O.l 

Range of alpha equilibrium alpha equilibrium alpha equilibrium 

e/ time time time 

0 .3333 31 .3333 46 .3333 2.52 

0.1 .3350 35 .3340 42 .3357 200 

0.5 .3131 68 ,358s 55 .3444 301 

1.0 .4901 105 .4137 70 .3517 371 
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infinite population sizes of both species, so there were no effects of genetic 
drift or demographic extinction. Extreme resource fluctuations occasionally 
led to gene fixation and species extinctions, but only when the range of ej 
exceeded 1.0. Slatkin (1980) found that, in a constant environment, 
divergence was affected by the relative densities of the two competing 
species. 

A second limitation of our approach is that we have posited an 
extremely simple genetic model of character states and resource use. The 
strong divergence that we found in our models may result from these con- 
straints on may provide additional insight into the evolution of character displacement 

in a variable environment. 
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