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Fig. 1. (A) Species-area plot for 
Pocillopora decapods; regression 
equation: square root (species 
number) = 0.121 + 0.907 (log,,, 
coral head size); R2 adjusted 
= 0.30. (B) Species-individuals 
plot for Pocillopora decapods; re- 
gression equation: square root 
(species number) = 1.08 + 1.33 
(loglo abundance); R2 adjusted 
= 0.61. (C) Individuals-area plot 
for Pocillopora decapods; regres- 
sion equation: square root (abun- 
dance) = - 8.01 + 4.28 (log,,, cor- 
al head size); R2 adjusted = 0.44. 
(D) Species-area regressions for 
reef flank and reef flat samples. 
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Table 1. Analyses of covariance results for seasonal and locational effects on abundance and species number. (Influential cases 
deleted) 

Y-variable Covariate (S) Factor n Test for dif- Test for dif- 
ferences among ferences among 

slopes intercepts 
(F values) (F values) 

Species Area Season 117 
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p < .01). Again, no obvious patterns emerge from the 
factor loadings on the first 2 axes. 

Covariation among species pairs 

To study patterns of interspecific association, corre- 
lation coefficients of abundance were calculated for 
selected species pairs. This statistic reveals whether 
the abundances of pairs of species covary positively, 
negatively, or independently of each other. Hurlbert 
(1969) warns that correlation coefficients may be mis- 
leading because they reflect both covariation among 
species densities (correlation) and the degree of associ- 
ation between species (as measured by presence-ab- 
sence data). In addition, abundance data usually vio- 
late the assumption of normality required for correla- 
tion. 

However, the correlation coefficient is still a useful 
measure of covariation, because confounding variables 
can be factored out. For example, most species abun- 
dances increase with coral head size, so positive corre- 
lations between densities may be spurious. A partial 
correlation coefficient, factoring out the effect of coral 
head size, would more accurately reflect the degree of 
covariation between the species. In addition, the effect 
of other species can be partialled out of any pairwise 
comparison. 

Correlations among the seven most common species 
were examined, using log densities to meet better the 
assumption of normality. For each pairwise compari- 
son, the effects of coral head size and the abundance of 
the other 5 species were statistically partialled out. For 

all the data, only 2 comparisons were significant 
(p < .05, 2-tailed) and both were positive correlations 
(Table 4) .  The congeneric xanthids Trapezia fer- 
ruginea and T. corallina were positively correlated. 
T. corallina was also positively correlated with the 
snapping shrimp Alpheus lottini. None of the other 19 
pairs was significant in either direction. 

However, the results are different if only those sam- 
ples with both species present are used. In this case, 2 
significant negative correlations also appear (Table 4). 
The congeners Trapezia corallina and T. formosa are 
negatively correlated. T. forrnosa is also negatively 
correlated with the palaeomonid shrimp Fennera 
chacei Holthuis. T. corallina is positively correlated 
with both T. ferruginea and the shrimp Harpiliopsis 
depressus (Stimpson). Although some of the signifi- 
cance levels change, the patterns are similar if the data 
are divided by season or location. 

Statistical tests are problematic for these sorts of 
data. With 21 comparisons, at least 1 or 2 significant 
results are expected by chance alone. If the signifi- 
cance level is appropriately 
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shrubsteppe bird communities. Neither study detected 
any major patterns of covariation in species' abun- 
dances. In this case, the first component of variation 
seems to be a function of coral head size. 

Association and correlation indices also suggest that 
most species covary independently of each other. Few 
significant correlations emerged from 21 pairwise 
comparisons. For the 3 Trapezia species, 1 pair was 
positively 
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