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Abstract A statistical challenge in community ecology is

to identify segregated and aggregated pairs of species from

a binary presence–absence matrix, which often contains

hundreds or thousands of such potential pairs. A similar

challenge is found in genomics and proteomics, where the

expression of thousands of genes in microarrays must be

statistically analyzed. Here we adapt the empirical Bayes

method to identify statistically significant species pairs in a

binary presence–absence matrix. We evaluated the per-

formance of a simple confidence interval, a sequential

Bonferroni test, and two tests based on the mean and

the confidence interval of an empirical Bayes method.

Observed patterns were compared to patterns generated

from null model randomizations that preserved matrix row

and column totals. We evaluated these four methods with

random matrices and also with random matrices that had

been seeded with an additional segregated or aggregated

species pair. The Bayes methods and Bonferroni correc-

tions reduced the frequency of false-positive tests (type I

error) in random matrices, but did not always correctly

identify the non-random pair in a seeded matrix (type II

error). All of the methods were vulnerable to identifying

spurious secondary associations in the seeded matrices.

When applied to a set of 272 published presence–absence

matrices, even the most conservative tests indicated a

fourfold increase in the frequency of perfectly segregated

‘‘checkerboard’’ species pairs compared to the null

expectation, and a greater predominance of segregated

versus aggregated species pairs. The tests did not reveal a

large number of significant species pairs in the Vanuatu

bird matrix, but in the much smaller Galapagos bird matrix

they correctly identified a concentration of segregated

species pairs in the genus Geospiza. The Bayesian methods

provide for increased selectivity in identifying non-random

species pairs, but the analyses will be most powerful if

investigators can use a priori biological criteria to identify

potential sets of interacting species.

Keywords Biogeography � Null model � C score �
Presence–absence matrix � Statistical test

Introduction

A major research focus in community ecology and bioge-

ography has been the identification of non-random species

associations in binary presence–absence matrices (Simberloff

and Connor 1979; Gotelli and Graves 1996; Sfenthourakis

et al. 2006). In these matrices, each row represents a

species or taxon, each column represents a site or sample,

and the entries indicate the presence (1) or absence (0) of a

species in a site (McCoy and Heck 1987). There are pat-

terns in such matrices that can be summarized by a single

univariate metric, such as the nestedness of the matrix
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(Patterson and Atmar 1986), or the C score (Stone and

Roberts 1990), a measure of average pairwise species

segregation.

In null model analysis (Gotelli 2001), the observed

matrix is randomized or reshuffled, and the metric is



algorithm (Gotelli 2000), in which species occurrences are

randomized, but the row sums (=species incidences) and

column sums (=species richness per site) of the observed

matrix are preserved. In benchmark tests for community

metrics of nestedness (Ulrich and Gotelli 2007a) and

co-occurrence (Gotelli 2000), this algorithm correctly

identifies random matrices and structured matrices with

acceptable type I and type II error frequencies. However, the

constraint of fixed row and column totals introduces asso-

ciations between species and sites that might distort the

number of species pairs that fall outside the 95% CL (Ulrich

and Gotelli 2007a).

Sequential Bonferroni correction (Benjamini

and Yekutieli criterion)

The Bonferroni correction is a simple metric to reduce the

FDER by dividing the significance level a by the total

number of tests r



scores). In bin C, 32 species pairs had scores between 0.50

and 0.55, whereas 19.5 ± 4.0 (mean ± 95% CL) were

expected (26 pairs marks the upper 95% CL). In bin D, 13

species pairs were observed with scores between 0.70 and

0.75, but only 3.1 ± 1.9 pairs were expected (eight pairs



species generate many species pairs: with species numbers

from only 15–45, the resulting distribution will have

between 100 and 1,000 unique species pairs.

Third, the Bayes methods (and the standard confidence

interval methods) identify which species pairs are non-

random, but they do not specify whether the pattern is one

of segregation or aggregation. To classify species pairs as

aggregated or segregated, we compared the observed

C score with the mean of the simulated C scores for a

particular species pair. Segregated pairs are those for which

the observed C score was greater than the average simu-

lated C score, and aggregated pairs are those for which the

observed C score was less than the average simulated

C score. Naturally, the majority of the segregated species

pairs occur in the bins that are close to 1.0, and the majority

of the aggregated species pairs occur in bins that are close

to 0.0. These pairs represent cases of very strong segre-

gation (perfect or near perfect checkerboard distributions)

or very strong aggregation (complete or nearly complete

overlap). However, as seen in Fig. 3, there is also a col-



of the primary pair changed the C score of the entire

matrix. These secondary pairs represent associations

between one species in the original matrix and one of the

two new species added to the seeded matrix. We also



2008). The online appendix provides a spreadsheet with the

original data matrix (Ulrich and Zalewski 2006) and fully

documented output from the Pairs analysis illustrated in

Fig. 1.

Results

Benchmark random matrices

Between 3.72 and 4.40% of the original MN and ME

matrices had significantly aggregated or segregated species

pairs as judged by the 95% CL benchmark (CL criterion) of

the fixed–fixed null model (Table 1). The BY criterion

reduced this fraction to 0.97% for the ME and 1.65% for the

MN
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number of aggregated or segregated species pairs exceed

the expected numbers (positive effect sizes). Hence for at

least 218 matrices we did not observe a significant trend

towards species segregation or aggregation when using a

species pair approach. However, in 107 matrices we did

find a significant matrix-wide C score (cf. Gotelli and

McCabe 2002), even when no individual cases of strongly

segregated species pairs could be detected.

Vanuatu and Galapagos matrix analyses

The Vanuatu bird matrix contains 56 species and 28 sites

(Diamond and Marshall 1976). As demonstrated in other

analyses (Stone and Roberts 1990; Gotelli and Entsminger

2001





(24%). In contrast, five of the seven significant segregated

pairs identified by the Bayes M criterion were congeners

(71%) (v2 contingency test: v2 = 3.03, P = 0.08).

Sanderson (2000) and Sfenthourakis et al. (2006) reported

similar results for this data set using the CL criterion,

although Sanderson (2000) used a different null model

algorithm.

Discussion

Pairwise tests of species co-occurrence patterns invariably

reveal statistically significant associations in random

matrices using the simple 95% CL criterion (Table 1). The

sequential Bonferroni, Bayes M, and Bayes CL criteria

substantially reduce such occurrences, although they do not

entirely eliminate them from random matrices. However,

these analyses reveal the unavoidable trade-off between

type I and type II statistical errors. For random matrices

that were seeded with a non-random pair of species, the

simple CL criterion did the best job of recovering these

patterns, whereas the Bonferroni and Bayes methods did

not detect the non-random pair in a substantial number of

cases.

One difficulty is that all four of the methods detected

false ‘‘secondary pairs’’ of species associations that

emerged when a single non-random association was added

to the matrix (Table 1). This result probably reflects, in

part, the complex non-independence among all species

pairs when the null model preserves fixed row and column

totals. However, these statistically significant secondary

pairs were more of a problem for aggregated than segre-

gated distributions. Previous authors have discussed the

possibility of a ‘‘dilution effect’’ in null model analysis in

which significantly segregated species pairs are not detec-

ted because too many pairwise comparisons are made

between pairs of species that are not interacting (Diamond

and Gilpin 1982; Colwell and Winkler 1984). However,

our results suggest there may well be a ‘‘concentration

effect’’ because the addition of a single non-random spe-

cies pair to a random matrix may generate a number of

significant secondary pairs.

The analysis of the 13ufi[5.7TD
[selishedfi[5.8.2(matrice)-10.3(s)[5.7T4(reve)-8.6(aled)-271.2(that)]TJ
-1.1381 -1.2519 TD
[(the)-257.2(major)-8.2(ity)-252.5(of)-259.6(significant)-264.6(species)-260.5(pairs)-256.2(show)-8.2(ed)-253.7(segr)-8(egated,)]TJ
T*
[(rather)-475.8(than)-474.2(aggregat)-10.5(ed)-469.9(distributio)-8.3(ns.)-4.7TD
There was astrong

concentration of both highly segregated and highly aggre-

gated species pairs, but also a set of species pairs that



Vanuatu bird matrices have significant matrix-wide segre-

gation, but the pairwise analysis of the Vanuatu matrix

revealed very few significant pairs of species, which are

ecologically and phylogenetically heterogeneous. In con-

trast, the Bayes M criterion identified seven significant

pairs in the much smaller Galapagos matrix (Table 7). Five

of these seven species pairs were concentrated within the

genus Geospiza, which is one of the few examples of a

competitively structured community that has been sup-

ported by extensive null model analysis (Simberloff and

Connor 1981; Schluter and Grant 1984; Sanderson 2000).

Although the Bayes criteria and the sequential Bonfer-

roni test do a better job of guarding against type I errors

than the simple CL criterion, all of the methods proposed

here must be used with caution. Even the most stringent

criteria still detected a small number of unusual pairs in a

large random matrix, and random matrices that were see-

ded with significant species pairs generated spurious sta-

tistical associations with other species in the matrix.

Perhaps it is asking too much of a statistical analysis to

reveal biologically meaningful pairwise associations with no

other information than a binary presence–absence matrix.

A similar limitation has emerged in regression analyses and

model selection. Whereas ecologists often use stepwise cri-

teria to select a subset of meaningful predictor variables,

these methods do not always identify the correct underlying

model. A more powerful approach is to specify a priori a set

of potential biological models, fit them to the data, and then

use model selection criteria to rank them or distinguish

between them (Burnham and Anderson 2002; Shipley 2002).

For presence–absence matrices, the best strategy might be to

identify ahead of time guilds or subsets of potentially inter-

acting species and restrict the analysis to these pairs.
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