




Although beyond the scope of this paper, we note that

many potential sources of error are associated with each

data layer, and that the effect of these errors will probably

vary with the spatial scale of the analysis. Recent studies

have begun to explore the effects of measurement errors

(e.g. Scott et al. 2002; Mathias et al. 2004; Guralnick & Van

Cleve 2005; Hurlbert & Jetz 2007). However, in most

analyses, process and measurement error are not distin-

guished, and they are pooled into a single error term. For

now, we take the same approach and assume that, for high-

quality data sets analysed at an appropriate spatial scale, the

underlying biogeographical signal of the data is not seriously

distorted by inevitable uncertainty in the data layers. Explicit

modelling of the processes that give rise to sampling errors

is a promising avenue for future research.

CURVE - F I T T ING ANALYSES OF SPEC I E S R I CHNESS

PAT T ERNS

How are the three kinds of data layers (gridded domain,

species occurrences and environmental variables) typically

analysed? Until recently, the most common approach has

been to treat each grid cell as an independent sample, and

then search for correlations between species richness and

climate variables within the domain. For example, a simple

linear regression of species richness of South American

birds with net primary productivity (Rahbek et al. 2007)

accounts for 44% of the variation in species richness among

1 · 1 degree grid cells (Fig. 1). This curve-fitting approach,

which typically uses linear functions and log-transformed

data, has characterized hundreds of published analyses that

invoke measures of contemporary climate as arguably causal

mechanisms of patterns in species richness. The strength of

the mechanism is often inferred from the GOF (usually

measured by r2), and by the frequency of studies that show

such patterns. For example, Hawkins et al. (2003) concluded

from a meta-analysis that 83 of 85 studies strongly

supported some aspect of the water-energy hypothesis,

because species richness was significantly correlated with

grid-cell measures of temperature or precipitation. In single-

factor regression analyses, climatic variables explained on

average 60% of the variation in species richness in

continental areas (Hawkins et al. 2003).

L IM I TAT IONS OF CURVE F I T T ING

The technical challenges of spatial autocorrelation (Rangel

et al. 2006), inter-correlated predictor variables (Mac Nally

2002), nonlinear responses of species richness to environ-

mental variables (Mittelbach et al. 2001) and effects of

spatial scale (Nogués-Bravo et al. 2008) have defined much

of the research programme in macroecology for the past

decade. Curve-fitting analyses have successfully identified

repeated patterns of correlation between species richness

and climatic variables. However, this extensive curve-fitting

activity has not led to satisfying explanations for the

underlying causes of species richness gradients (Currie et al.

2004).

As noted by Currie et al. (1999), the core problem is that

most hypotheses to account for large-scale variation in

species richness are specified so vaguely that they do not

predict anything more precisely than a qualitative latitude–

richness correlation (which served to motivate many of the

hypotheses in the first place) or a simple correlation of

species richness with measures of contemporary climate

(which does not lead to unique predictions for different

hypotheses). Notable exceptions include the species energy

model (Wright 1983), the mid-domain effect (Colwell &

Lees 2000) and metabolic theory (Allen et al. 2002), all of

which have recently been used to derive quantitative

predictions of species richness patterns and to test those

predictions with empirical data (Jetz & Rahbek 2001; Currie

et al. 2004; Hawkins et al. 2007). A second problem is that

both contemporary and historical factors influencing species

richness are likely to interact in complex ways. We lack a

body of theory to explain how these mechanisms will

interact. Although causal modelling (Shipley 2009) is a

potential approach to this problem, it has rarely been used in

macroecology. The more common approach of using simple

or multiple regression analysis is not an effective way of

dealing with multicollinearity (Burnham & Anderson 2002).

A final problem with curve-fitting is that the response

variable in the statistical model – species richness per grid

cell – is the total number of species whose geographical

ranges overlap each grid cell in the domain. A mechanistic

understanding of species richness patterns should be based

on modelling the actual species ranges themselves, rather

Figure 1 Linear regression of species richness of South American

endemic birds vs. net primary productivity (NPP) (r2 = 0.44,

P < 0.001). Each point represents a single 1� · 1� latitude–

longitude grid cell (n = 1676) (data from Rahbek et al. 2007).
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Evolutionary origins

This control knob sets the number of independent

evolutionary origins for modelling the biota. The ground

state of this control knob defines n independent evolution-

ary origins for a biota of n species. The origin of each

species is a unique event, and evolutionary history (i.e. the

position of the geographical range of the ancestor species)

does not have an influence on the resulting pattern.

Moreover, niche inheritance and niche conservatism (Losos

2008) are not explicit in this model: the niche of each

species is independent of the niche of all other species. Most

existing range-based models of species richness (Jetz &

Rahbek 2001; Grytnes 2003; Connolly 2005; Storch et al.

2006; Rahbek et al. 2007) treat the origin of each species as

an independent event.

At the other extreme, a single evolutionary origin might

initiate an entire clade that is distributed within a domain. In

this class of models, each new species originates only within

(or adjacent to) the geographical range of its ancestor.

Evolutionary history potentially influences the pattern of





Models that specify a single evolutionary origin and

dispersal limitation in an equiprobable environment [1-1-0]

capture the spirit of the neutral model (Hubbell 2001), but

differ from classic neutral models in specifying a bounded

domain. At large biogeographical scales, with strong

dispersal limitation, these models can generate mid-domain

peaks of species that are qualitatively similar to the

predictions of the spreading dye and other two-dimensional

mid-domain effect models (Rangel & Diniz-Filho 2005b).

Models that characterize speciation, colonization and

extinction dynamics at the patch scale (rather than as

individual births and deaths) also belong to this category

(evolutionary origins models of Bokma







calculate the K–L distances associated with the simulated

data sets (Tsay 1992; Waller et al. 2003). These K–L

distances K(Si, E), i = 1, 2, …, N form a parametric

bootstrap distribution (Efron & Tibshirani 1993; White

2002) that can be used directly for hypothesis testing. The

P-value is estimated directly as the proportion of simulated

K(Si, E) distances that is greater than or equal to K(O, E).

This empirical testing procedure assumes that simulations

are independent of one another, but (importantly) does not

assume independence among the cells within a given

simulation, nor does it make any assumption about the

nature of the distribution of the K–L distances.

Analyses such as comparisons of MSE values and tests

based on K–L distances will allow investigators to quantify

the accuracy and precision of different simulation models, to

rank competing models and to perform GOF tests for

individual models. These tests can be performed on

contemporary species distributions and environmental vari-

ables, but they can also be adapted for evaluating changes in

species richness through time. In addition, diagnostic tools

and residual plots can be used to identify individual grid cells

or geographical regions in which a model�s predictions

consistently overestimate or underestimate species richness.

FUTURE CHAL L ENGES

We have argued that stochastic simulation models of species

occurrences provide a powerful complement to traditional

curve-fitting and more recent bioclimatic species distribution

modelling. However, the GSM is not a panacea. As with

traditional curve fitting and bioclimatic species distribution

modelling, the results will be sensitive to the spatial scale and

taxonomic resolution of the data. Moreover, our ability to

test historical hypotheses will be limited by the availability of

good phylogenies and (especially) environmental data layers

for historical climates. Nevertheless, simulation models hold

great promise for understanding the role of historical and

contemporary forces in shaping species richness patterns and

for projecting species richness under climate change.

In closing, we note that the subdiscipline of historical

biogeography (Morrone & Crisci 1995) also has tried to link

patterns of species diversity to historical and evolutionary

processes through the mapping of contemporary diversity

on phylogenies, areograms and vicariant events (Platnick &

Nelson 1978; Rosen 1978; Nelson & Platnick 1980).

Perhaps the development of a detailed GSM will provide

a conceptual bridge between macroecology and historical

biogeography (Brooks 1990; Cracraft 1994).
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