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FIG. 1. Continued.

el tests. The general result was that degenerate matrices
did increase the frequency with which the null hy-
pothesis was rejected. However, for well-behaved al-
gorithms, this increase was usually ,10%. The effect
of degenerate matrices was usually much less than the
effect of the algorithm or index selected.

Estimating Type I errors

Estimating Type I errors means using each algorithm
and index to statistically evaluate a ‘‘random’’ test ma-
trix, which is presumably random with respect to spe-
cies interactions. For each combination of index and
algorithm, I created 100 such test matrices, and kept
track of the 100 upper- and lower-tail probabilities for
each test. If the test is robust to Type I error, ;10 of
the 100 test matrices should have been nonrandom at
P , 0.05 (in either tail). On the other hand, if the test
is prone to Type I error, the number of times the null
hypothesis is rejected will be much greater than 10.
Algorithms or indices that are prone to Type I errors
should not be used because there is a danger that we
will incorrectly reject the null hypothesis for a data set
that is random.

How, exactly, should a ‘‘random’’ matrix be con-
structed for such a test? I used four procedures to create
different kinds of test matrices. Each matrix was cre-
ated using the observed marginal totals from the West
Indian finch matrix (Fig. 2). The four kinds of test
matrices were:

Test 1—Complete randomization. The 55 species oc-
currences were completely randomized across the 19
3 17 5 323 cells of the matrix. This is equivalent to
SIM1.

Test 2—Randomize each row, columns equiproba-
ble. The species occurrences in each row were ran-
domized among the 19 sites. This is equivalent to
SIM2.

Test 3—Randomize each row, columns proportional.
The species occurrences in each row were randomized
among the 19 sites, with the probability of occurrence
being proportional to the column total in the matrix.
This is equivalent to SIM4.

Test 4—Randomize each row, columns proportional
to the logarithm of island areas. The species occur-
rences in each row were randomized among the 19
sites, with the probability of occurrence proportional
to the logarithm of island area.

Thus, in the first three kinds of test matrices, there
is an identical simulation procedure that is used to eval-
uate the matrix. Test 4 incorporates independent data
on island areas in order to construct test matrices. Only
nondegenerate test matrices were used in these anal-
yses. Once each test matrix was created, it was eval-
uated statistically with 1000 randomizations of each of
the 36 combinations of algorithms (9) and indices (4).
I repeated this process for 100 test matrices of each
combination. The computer program kept track of the
number of times the null hypothesis was rejected (either
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TABLE 7. Results of null model analyses of Virginia ants
co-occurrence matrix (Fig. 3). Entries are as in Table 6.

Observed

CHECKER

48

C score

2.07

V ratio

0.98

COMBO

10

SIM1 32.35
(0.050)

3.31
(0.993)

0.70
(0.865)

11.24
(0.230)

SIM2 49.58
(0.860)

2.15
(0.682)

0.70
(0.878)

11.39
(0.195)

SIM3 30.04
(0.014)

3.04
(0.994)

0.98
(0.569)

10.81
(0.353)

SIM4 41.89
(0.014)

1.67
(0.007)

1.71
(0.034)

9.40
(0.861)

SIM5 23.52
(0.003)

3.35
(0.988)

1.03
(0.148)

10.19
(0.608)

SIM6 26.05
(0.001)

2.39
(0.704)

1.73
(0.029)

9.45
(0.859)

SIM7 24.92
(0.012)

3.83
(0.993)

0.71
(0.852)

10.37
(0.559)

SIM8 20.37
(,0.001)

2.56
(0.767)

1.72
(0.033)

9.23
(0.888)

SIM9 47.18
(0.175)

2.00
(0.199)

n.a. 10.71
(0.406)

Table 7 illustrates the results of testing the Virginia
ant matrix against all nine algorithms and four co-oc-
currence indices. In contrast to the results of the West
Indian finch analysis, few of these tests are statistically
significant for well-behaved algorithms. Ten species
combinations were observed in this matrix, which was
not statistically significant for any of the algorithms.
There were more checkerboard species pairs (48) than
expected compared with SIM1, and SIM3 to SIM8.
However, these algorithms are prone to Type I error
for this index (Table 1). The C score was significantly
greater than expected only when compared to SIM4,
which is also prone to Type I error for this index (Table
1). The only evidence for nonrandomness was in the
V ratio, which was significantly less than expected for
SIM4, SIM6, and SIM8. However, all of these models
assume that there is variation in site quality, so that
probabilities of occurrence are proportional to species
richness totals for each site. Thus, ‘‘empty sites’’ in
the original matrix will not be filled in these simula-
tions. A more appropriate null model for the ant data
would be SIM2, in which species occurrences are fixed
and all sites are equiprobable. None of the co-occur-
rence indices showed a significant pattern with SIM2.
Overall, there is little evidence that the small-scale co-
occurrence of ant foragers in pitfall traps was nonran-
dom.

DISCUSSION

Choosing the right algorithm

Although all nine algorithms are logically plausible,
the analyses reveal that many of the algorithms would
be unacceptable choices because they are very prone
to Type I error, and would be expected to produce false
positives with data sets that have little or no real struc-
ture. However, three algorithms consistently had low
probabilities of Type I errors when compared with a

variety of random data matrices: SIM2, SIM4, and
SIM9 (Table 4). These algorithms share in common the
property that they all maintain the observed row totals,
that is the species occurrence frequencies. The algo-
rithms differ in how the columns (5sites) are treated.
In SIM2, the sites are equiprobable, whereas in SIM4,
the probability that a species occurs in a site is pro-
portional to the column total for that site. Finally, SIM9
maintains the observed number of species in a site.
Conceptually, these algorithms are satisfying, because
they correspond to a colonization model in which spe-
cies colonize an archipelago randomly with respect to
one another. Note that the colonization of each species
is not ‘‘random’’ with respect to the sites: occurrence
frequencies are maintained for each species, and, in
SIM4 and SIM9, differences among islands are main-
tained. But the species occurrences are random with
respect to one another, which is an appropriate null
model for detecting patterns caused by species inter-
actions.

Critics have pointed out that extinctions are an im-
portant outcome of species interactions, so that incor-
porating species occurrence frequencies may ‘‘smuggle
in’’ species interactions in the null model. Although
this may be true, my analysis of Type I errors suggests
that allowing species occurrence frequencies to vary
may generate false positives in a null model test. This
conclusion is reinforced by other debates in the null
model literature. For example, Gilpin and Diamond’s
(1982) null model operates on the same principle as
SIM8, which allows species occurrence frequencies to
vary. Wilson (1987) showed that this model rejects the
null hypothesis for random data sets constructed by the
recipe for TEST1, although Gilpin and Diamond (1987)
contend that Wilson (1987) did not correctly implement
their model.

In an analysis of species co-occurrence as measured
by ‘‘favored states’’ analysis, Fox and Brown (1993)
used a null model that implicitly assumed species oc-
currence frequencies were equiprobable. Stone et al.
(1996) and Wilson (1995) reanalyzed the data and ad-
justed species occurrences on the basis of observed
frequencies and species geographic ranges. In these
reanalyses, the co-occurrence patterns were no longer
statistically significant.

Because the co-occurrence tests are very sensitive
to variation in species occurrence frequencies, row to-
tals should be preserved as a constraint in the null
model. On the other hand, the results were surprisingly
insensitive to variation in column totals (5number of
species per site), so this constraint should be modified
to reflect sampling methods or variation in site quality.
Specifically, SIM9 seems most appropriate for analyz-
ing ‘‘island lists,’’ especially for classic archipelago
data in which there are strong species–area effects. On
the other hand, SIM2 seems most appropriate for an-
alyzing ‘‘sample lists,’’ particularly when comparing
standardized samples that have been collected in areas
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FIG. 6. Type II error tests for SIM1–SIM9. Each panel depicts the four co-occurrence metrics tested against a different
simulation algorithm. The x-axis is the noise level, that is, the number of site occurrences that have been randomly transposed
within each row of the perfect checkerboard matrix (Fig. 4A). The y-axis is the P value, shown on a log scale, with the 0.05
level indicated by a dashed line. Each point represents the average P value for five independent trials. Key to symbols: open
circle 5 C score; solid diamond 5 V ratio; open triangle 5 number of species combinations (COMBO); solid circle 5 number
of species pairs forming perfect checkerboards (CHECKER). Compare these curves to the idealized curves in Fig. 5.

of homogenous habitat. SIM4 is somewhat of a hybrid
between these two, because it allows column totals to
vary, but in proportion to observed totals. However, it
may cause the null hypothesis to be incorrectly re-
jected, especially if used with the C score or CHECK-
ER.

Choosing the right index

The choice of index is not as clear-cut as the choice
of which algorithm to use, in part because each index
seems to measure a slightly different aspect of species
co-occurrence (Table 5). The number of checkerboards
(CHECKER) and the number of species combinations
(COMBO) are most relevant to the historical devel-
opment of ideas on community assembly (Diamond
1975). However, both of these indices may cause the
null hypothesis to be incorrectly accepted (Fig. 6), be-
cause they are sensitive to rearrangements of species
occurrence patterns. A change in a single species oc-
currence can create or destroy a perfect checkerboard,
or add or delete a species combination. Consequently,
these measures will also be sensitive to measurement
error, which may be common in presence–absence ma-
trices.

In contrast, the C score and the V ratio are based on
the average co-occurrence and covariance, respective-
ly, of all species pairs. Therefore, minor changes in the
data do not affect these indices as much. The C score,
in particular, seems relatively insensitive to noise in
the data, and can still detect pattern even when ;50%
of the species occurrences in a perfect checkerboard
matrix have been randomized (Fig. 6). When used with
SIM2 or SIM9, the C score has good statistical prop-
erties and is not prone to false positives (Table 4).
Finally, this index measures the checkerboard pattern
of species mutual exclusion that reflects competitive
interactions, but is not as restrictive as a count of per-
fect checkerboard pairs (CHECKER).

The variance ratio as an index of nonrandomness

The behavior of the V ratio is somewhat unusual,
and deserves special comment. Of all the co-occurrence
indices, it is the one index that is uniquely determined
by the row and column totals, and not by the actual
co-occurrence pattern itself. For this reason, it cannot
be tested with SIM9, which retains row and column
totals, and therefore generates no variation in the V
ratio. For the V ratio, ‘‘The null hypothesis of no as-
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sociation (H0) states that the sum of the [species’] co-
variances is zero’’ (Schluter 1984: 999). However, this
turns out to be a somewhat different measure of co-
occurrence than the C score and CHECKER.

What, precisely, does the V ratio measure? It mea-
sures the variability in the number of species per site.
In a null community, we would expect the number of
species per site to vary because of chance colonization.
However, if species richness is regulated because of
biological interactions, communities should converge
on a relatively constant number of species per site. This
is the niche limitation hypothesis of Wilson et al.
(1987), which states that the variance in species rich-
ness per site should be unusually small if the number
of species within a guild is limited by competition (Col-
well 1979).

If all the sites have exactly the same number of spe-
cies, there is no variance among sites, and the observed
V ratio is zero. The reason the V ratio detects a highly
significant pattern for the matrix in Fig. 4A is not be-
cause of the large number of checkerboard arrange-
ments of species, but because each site in the matrix
contains exactly 20 species. Thus, the V ratio, used
with SIM2 or SIM4, is a useful probe for determining
whether species interactions are constraining the num-
ber of coexisting species. There is no evidence of this
for either the West Indian bird matrix (Table 6) or the
Virginia ant matrix (Table 7), because in both of these
examples, there is considerable heterogeneity in spe-
cies richness per site. Variation among sites probably
also explains Schluter’s (1984) finding that most pub-
lished co-occurrence matrices exhibit V ratios greater
than 1.0.

The importance of row and column totals

All of the algorithms presented in this paper make
use of information in the row and column totals to
constrain the randomizations. Critics of null models
have claimed that this procedure is circular because the
marginals themselves reflect competitive interactions
(Grant and Abbott 1980, Colwell and Winkler 1984).
However, my analyses demonstrate that row and col-
umn constraints do not prevent the null model from
detecting patterns in nonrandom matrices, even when
the pattern has been considerably degraded by adding
noise (Fig. 6). Moreover, the use of marginal con-
straints forms the basis for contingency table analysis
(Fienberg 1980), which has been widely used in the
analysis of species co-occurrence patterns (Whittam
and Siegel-Causey 1981). If one wishes to test the hy-
pothesis that marginal constraints are affected by spe-
cies interactions, the V ratio, perhaps used with SIM2
or SIM4, would be an appropriate model.

Practical advice for the empiricist

Some ecologists may despair at the results of these
analyses. After all, the same data matrix may yield
random or highly significant patterns, depending on

which algorithm or index is used for analysis (Tables
6 and 7). However, the same troubling result can be
obtained from conventional parametric analyses. Data
transformations, interaction terms, model structure, and
designation of fixed and random factors can generate
an equally bewildering diversity of outcomes in a
‘‘standard’’ analysis of variance (Scheiner and Gur-
evitch 1993). Ecologists need to move beyond the idea
that there is a single ‘‘one-size-fits-all’’ null model that
is appropriate. Rather, the null model and index should
be chosen based on the kind of data (island lists vs.
sample lists) collected and the question being asked.
For a preliminary analysis of co-occurrence patterns of
island list data, I suggest using the C score with SIM9.
This combination is not vulnerable to false positives,
has good power in the face of noisy data, and measures
a pattern of co-occurrence that would be consistent with
competitive exclusion.

But I would also recommend examining the outcome
of other models and other indices, as in Tables 6 and
7. There is great value in exploring the results of several
null models that incorporate different degrees of ran-
domness. Statistical purists will not approve of this
approach because it undercuts the rigorous interpre-
tation of calculated probability values, and because it
may tempt ecologists to go on ‘‘fishing expeditions’’
and search for an analysis that supports their precon-
ceptions. The advantage of this approach is that it pin-
points how changing the assumptions of the model al-
ters the results, which is an essential comparison for
any confrontation of a model with real data (Hilborn
and Mangel 1997). Certainly the interpretation of the
West Indian finch matrix and the Virginia ant matrix
was enhanced by consideration of a variety of null
models.

The models presented here are by no means ex-
haustive, and it is easy to imagine other algorithms that
could have been used. Ecologists will continue to de-
velop new kinds of null models that incorporate spatial
and temporal variability in populations and commu-
nities (Thomson et al. 1996, Roxburgh and Chesson
1998). However, the most important progress in null
model analysis will probably come from the analysis
of new data sets. Much of the older null model literature
is dominated by analysis and reanalysis of published
islands lists, such as the West Indian finch matrix (Fig.
2). These second- and third-hand data sets have a num-
ber of limitations, including species taxonomy, sample
standardization, source pool limits, and geographic var-
iation (Gotelli and Graves 1996). Home-grown data
sets, such as the Virginia ant matrix (Fig. 3), may offer
the best chance for examining species co-occurrence
patterns, because the methods of collection and anal-
ysis can be tailored to the questions being asked. Of
course, such data sets are more time consuming and
costly to obtain than using published island lists, but
ultimately, they should be more rewarding for under-
standing co-occurrence patterns in nature.
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SUPPLEMENTARY MATERIALS
The software utilized in the analysis presented here (EcoSim) is available in ESA’s Electronic Data Archive: Ecological

Archives E081-022. The software may be downloaded at no cost. All of the algorithms described in the paper are included.


