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Hawkins et al., 2003; Rangel & Diniz-Filho, 2005), whereas

studies of dispersal and neutral processes have usually focused

on species-abundance relationships (McGill et al., 2006;

Rosindell & Cornell, 2013), and distance-decay patterns (Smith

& Lundholm, 2010; Diniz-Filho



In rasters of 2.5 arc minutes, we also compiled the 19 envi-

ronmental variables available in Bioclim (http://www.worldclim

.org/bioclim): annual mean temperature (1), mean diurnal tem-

perature range (2), isothermality (3), temperature seasonality

(4), maximum and minimum temperature of the warmest and

coldest months (5 and 6), temperature annual range (7), mean

temperature of the wettest, driest, warmest, and coldest quarters

(8–11), annual precipitation (12), precipitation of the wettest

and driest months (13 and 14), precipitation seasonality (15),

and precipitation of the wettest, driest, warmest, and coldest

quarters (16–19). We then averaged the measure of each envi-

ronmental variable within each 2 × 2° grid cell. Because most of

the climatic variables are correlated with one another, we sum-

marized them with a Principal Component Analysis. The first

principal component axis was used as a predictor variable in all

models. We present the results using individual climatic vari-

ables in the supplemental material (Figs S1–S5).

Habitat quality was quantified with information available

from each study. We classified forest status of each study on a

scale from 1 to 5 (1 =

http://www.worldclim.org/bioclim
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calculate the Jaccard similarity index. The correlation between

the Morisita-Horn index of the probabilistic model and the

Morisita-Horn index of the simulated model was 0.9998. We

used the species richness, the Jaccard similarity index, and the

turnover component from the Jaccard similarity index from this

simulation model as the predicted values from the optimized

neutral model.

Environmental models

To test the association of species diversity with the climatic and

habitat quality variables, individual logistic regressions were

fitted for each species against the climatic and habitat quality

variables. We refer to these models hereafter as the climatic and

habitat models.

The logistic model estimates the effect of a predictor variable

on the species probability of occurrence. These probabilities can

then be used to estimate the effect of the predictor variable on

the overall species richness (S) and composition.

To calculate the expected species richness and Jaccard

pairwise similarity index based on the climatic and habitat

models, the distribution of each species was simulated in a spa-

tially explicit model (Rahbek et al., 2007). For each species, we

assigned randomly species occurrences (1 s) in grid cells based

on the probabilities of occurrence predicted by a climatic or

habitat variable. This procedure was performed independently

for each grid cell, and the observed species occurrences were not

preserved. Note that this model does not require the species to

have contiguous ranges as in the spreading dye model. The

simulation was replicated 10,000 times to calculate the mean

species richness in grid cells, and the Jaccard index and turnover

between each pair of grid cells. For species richness, similar

results were obtained by summing the probability of occurrence



All analyses were conducted in R (R Development Core Team,

2013, v. 3.0.2). Most of the summary statistics calculations were

implemented by the authors, and are available at http://www

.uvm.edu/∼cddambro. We used the package Vegan (Oksanen

et al., 2008) for the remaining analyses.

RESULTS

Patterns of species richness

All the models had a poor fit to species richness (Table 1; Figs 2

and S3). The maximum r2 was only 0.21 for the habitat model,

which had the lowest mean square error, variance, and bias. Both

the neutral model and the spreading dye models generated the

familiar peak of species richness in the middle of the domain of

the Atlantic Forest, whereas the empirical peak of species rich-

ness occurred in two disjunct coastal grid cells (Fig. 2).

Patterns of species composition

Species composition (measured as principal coordinates of the

Jaccard similarity matrix in dbRDA analyses) was best fit by the

neutral model (r2 = 0.27), the spreading dye model (r2 = 0.27),

and the climate model (r2 = 0.22), but was poorly fit by the

habitat model (r2 = 0.10; Table 1; Figs 3 and S4). Most of the

variation (24 %) in species composition was represented in the

first principal coordinates axis of dbRDA. Species composition

in the first principal coordinates axis was well-fit by the neutral

model (r2 = 0.77), the spreading dye model (r2 = 0.75), and the

climate model (r2 = 0.63), but was poorly fit by the habitat

model (r2 = 0.04).

The analysis of the turnover component of the Jaccard simi-

larity index generated results that were similar to the analysis of

overall species composition (Table 1). However, the explanatory

power of the climate (r2 = 0.39), spreading dye (r2 = 0.43), and

neutral (r2 = 0.43) models was higher than for the analysis of

overall species composition (Table 1).

The four models generated contrasting predictions for the

distance-decay relationship of species similarity versus geo-

graphic distance. The spreading dye and neutral models pre-

dicted a steep distance-decay function, whereas the climate

model predicted a linear decay and the habitat model predicted

no decay with distance (Fig. 4). The predictions of all four

models differed from the empirical best-fit GLM exponential

curve.

The similarity in species composition between two grid cells

was associated with the geographical distance and climatic dis-

similarity between cells (bGLM = −0.29 and bGLM = −0.12, respec-

tively; Table 2). However, only geographical distance was

correlated with the similarity in species composition when

all predictor variables were included into a single model

(bGLM = −0.23; Table 2). Habitat quality was not significantly

associated with the similarity in species composition in simple

or multiple GLM models (bGLM ≤ |0.02|; Table 2). Similar results

were found when the turnover component in the Jaccard simi-

larity index was separated from the nestedness component.

DISCUSSION

Patterns of species richness

At the biogeographic scale, species richness of many taxa is

well-correlated with climate variables, especially temperature

and precipitation (Hawkins et al., 2003). At the regional scale of

the Atlantic Forest, the best predictor of small-mammal species

richness was a simple measure of habitat quality (Table 1;

Fig. 2). Neutral or mid-domain effect models did not predict

richness very well. Although our implementation of the neutral

Table 1 Fit of the climatic, habitat quality, spreading dye, and neutral models for species richness and composition. Species composition
was measured as the Jaccard similarity index and the turnover component of the Jaccard similarity index (Baselga, 2012). BIASsq: Sum of
squared bias; VAR: sum of model variance; MSE: sum of mean square errors (BIASsq + VAR). See main text for details on the BIASsq and
VAR calculations; rpartial

2: Explained variance after removing the effects of log transformed trapping hours on the response variables. r2 and
P-values were calculated from regression models. P-values were corrected for sampling effort by removing the effects of log transformed
trapping hours on the response variables before analysis.

Response variable Explanatory model BIASsq VAR MSE P r2 rpartial
2

Richness Climatic 1394.69 353.04 1747.73 0.47 0.01 0.01

Habitat 1038.90 197.73 1236.63 0.019 0.21 0.07

Spreading dye 1262.47 202.87 1465.34 0.624 0.09 0.01

Neutral 1597.73 225.00 1822.73 0.459 0.09 0.01
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between grid cells (Fig. 4; Table 2). These distance-decay rela-

tionships are often interpreted as evidence for community

assembly via dispersal limitation, or of spatially structured envi-

ronmental effects (Nekola & White, 1999). Although the

distance-decay relationship for small-mammals can be fit by a

GLM (r2 ∼0.25; Fig. 4), the shape of the curve does not match

the quantitative predictions of the neutral or spreading dye

models, which both generated a steeper decay profile. The

climatic model predicted a much shallower distance-decay

relationship, and the habitat model predicted no decay with

distance (Fig. 4). As Tuomisto & Ruokolainen (2006) have

emphasized, the distance-decay relationship is not measuring

the same thing as species composition calculated by ordination

methods. When species composition is measured with the PCoA

ordination, the fit is considerably improved for both the neutral

and spreading dye models (r2 = 0.74, 0.73, respectively; Table 1),

but is weaker for the climatic and habitat models (r2 = 0.62, 0.11,

respectively; Table 1).

Controversy of neutral and spreading dye modes

In our analyses, the neutral and spreading dye models generated

predictions that were virtually identical for species richness and

composition. This was not a surprise given that both models

simulated the spreading of dispersal-limited species in a homo-

geneous bounded domain. Rangel & Diniz-Filho (2005) were
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