E-Article

The Mid-Domain Effect and Species Richness Patterns: What Have We Learned So Far?

DE, 1996). DE ______ DE . . . ben ben and the second · ... • . ~ • . . .

What Are Mid-Domain Effect Models, and What Do They Show?

(H. 1983; C. 1984; G. 1996; G. 2001). (ners provide a strategy of the second secon بالمراجع والمحاف والمعادية والمحافظ والمحاف والمحاف والمحاف والمحاف والمحاف والمحاف والمحاف والمحاف والمحاف store the second state of (H.e. 2000).

DE DE

· 1·1 ' 1··· ' · · · ' --¹. 1 $\mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} =$ 1. 1987), ..., 'Br., 1998); ..., 'Br., 1998);

prove and a second state of the second second 1999; B. 2001; 2001, 2002; D. -F. 2002; H. D. -F. 2002; in the second se H • 1994; • C_{1} 1998; 1998; 2000*a*; 2000; G_{1} 2001; G_{2} 2002; 2002; 2003). E I DE DE PORTO DE and the second of the second to a product the second s

Population Processes versus Biogeographic Patterns

(4.3)

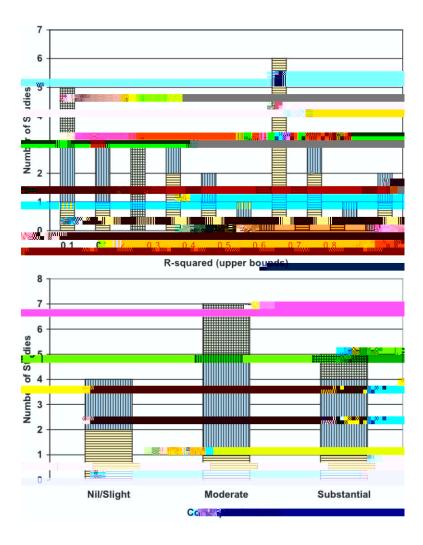
, s A (s. , s	·	11	G	1-D	2-D	· · · ·	· · · · · · · · · · · · · · · · · · ·
E. 2002	reice pro-	1-1	1	78%			- i i
	1 1			66%			• [*]
G 2001	· T _ \ - " •	·	•••	51%		E	-
		/ 10		46%		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-
		/ 10		96%		and the second second	

Table 1: $\dots = \dots = E_{n-1}$ $\dots = \dots = D_{n-1}$ $\dots = D_{n-1}$

.

Theo e ical Range Si e F e enc Di ib ion

DE (C) H 1994; 1998) FD. C (C) H 2, 1994 C 2000a. 1998 J A 2, 1957 C 2000a. (C) H 2, 1994 C 2000a. (C) H 2, 1994 C , 1995 J A 2, 1957 (C) H 2, 1995 J A 2, 1957 (C) H 2, 1995 J A 2, 1957 (C) J A 2, 1957 J A 2, 1957 (C) J A 2, 1957 J A 2


(A 1984; B. . . 1995; G. . . 1996, 2003; 1999),

 $A = \left(19^{\circ} + 45^{\circ}\right)$ $DE = \left(19^{\circ} + 45^{\circ}\right)$ $DE = \left(19^{\circ} + 45^{\circ}\right)$ $DE = \left(19^{\circ} + 10^{\circ}\right)$ $A = \left(19^{\circ}$

A. ..., (1, ..., 1)(1, ..., 1), (1, ..., 1)

Se ing Domain Limi

 $\begin{array}{c} A_{-}, e_{-} \\ e_{-} \\$

 $DE = \begin{bmatrix} 1 & 1 & 1 & 2003 \\ 1 & 1 & 2002 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 2002 \\ 2002 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 2002 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 2002 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 2002 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 2003 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 2003 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 2003 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \\ DE = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 &$

 $DE = \frac{1}{2002} + \frac{1}{2002}$

C. 1998; 1999; H. C. C. 2002; DE DEDE

Dimen ionali

 $= \underbrace{1}_{j} \cdot \underbrace{1}_{$

M l i a ia e App oache

DE A. A 1995; 1997; 1997). E C 1980; G100; Saiical Ie

000 The Ame ican Na ali

Mid-Domain Effec : Wha Ha e We Lea ned? 000

allere for a state of the former of the second state

(1 - 1982).

 $H_{1} \rightarrow H_{2} \rightarrow H_{2$

Ea l Ue of N ll Model i h Poo S a i ical P ope ie. I [1, 0] [

 $H_{1} = \frac{1}{12} + \frac$

In ellec al Re i ance o N ll Model Tha Challenge Widel Accepted Contentional Widom. (G. 1999).

I (1 + 1) (1

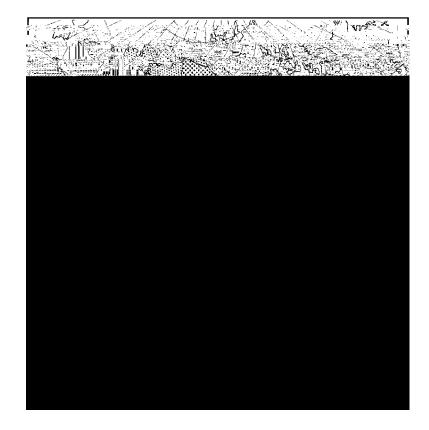
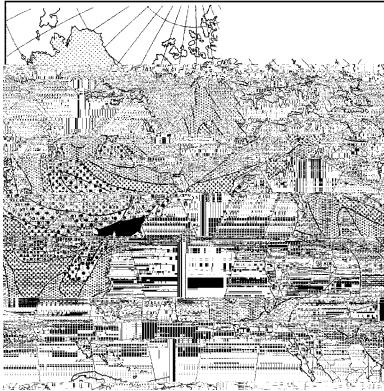



Figure C1:

Figure C2:

その方言

D. . - . A × . DE

(1970) = • 1. . 1. . C1, C2, C3). . . . DE (DE). DE -DE -**F** . (2002, . 423) D. • · · · · · r- 1 · · · · • · ;. **.** and the state of the state

the second state of the second . . . • 1 1 .) ۹. ۱ 6.64 · · · · *

Figure C3: $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=$

379 391.

- (B. .) 73:579 582.

F. A.,
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
<t