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Abstract.



All of these methods generate estimates of asymptotic

species richness, and many also generate variances and

confidence intervals about the estimates. Connolly et al.

(2005) provided a formula for estimating how much

sampling is required to unveil the parametric lognormal

abundance distribution. However, no models to date

have included a nonparametric estimate of the sampling

effort (number of individuals or samples) that would be

necessary to reach the asymptote of a species accumu-

lation curve by actually detecting all species present.

Because biodiversity sampling is labor intensive (Lon-

gino and Colwell 1997, Lawton et al. 1998), such an

estimate of sampling effort is of great interest for

effective planning of biotic inventories.

In this paper, we derive estimators for the sampling

effort required to reach the asymptotic richness estimat-

ed by Chao1 and Chao2, two widely used nonparametric

estimators of species richness for abundance and

incidence data, respectively. The relatively simple

solutions are based on a derivation by the founder of

modern computer science, Alan Turing, who used it in

cryptographic analyses during World War II. We

provide an Excel spreadsheet macro for performing the

calculations, and we present estimates of complete

sampling effort for several published biodiversity

surveys. Simulation results based on data sets from

two large biodiversity inventories demonstrate the

robustness of the proposed method to departures from

some of the sampling assumptions.

SAMPLE SIZES FOR ASYMPTOTIC ESTIMATORS

Abundance data

Assume that there are S species in a target biological

community or assemblage. A random sample of n

individuals is selected (with replacement) from the

community. A lower bound of species richness is

obtained as

Sobs þ ð1 � 1=nÞf 2
1 =ð2f2Þ ð1Þ

where Sobs is the number of species observed, and fr is

the count (frequency) of species that are observed

exactly r times in the sample (Chao 1989). Thus, f1 is

the number of ‘‘singletons,’’ or species represented by

exactly one individual in the sample; f2 is the number of

‘‘doubletons,’’ or species represented by exactly two

individuals in the sample; and f0 is the unknown number

of species that are present in the community but not

detected by the sample and therefore each have zero

individuals in the sample. Because the sample size n is

often large, we can ignore the term (1 � 1/n) in Eq. 1 and

obtain the following Chao1 estimator (Sest) for species

richness if f2 . 0:

Sest ¼ Sobs þ f 2
1 =ð2f2Þ: ð2Þ

In this equation, f̂0 ¼ f 2
1 /(2f2) is an estimator for the

number of species present but undetected in the sample.

The Chao1 estimator represents a universal lower bound

in the sense that it is valid under all types of species

abundance distribution. Thus, all estimated sampling

effort derived in this paper represents minimum effort. If

f2 ¼ 0, the Chao1 estimator is replaced by Sest ¼ Sobs þ
f1( f1 � 1)/[2( f2 þ 1)] (Chao 2005).

Even before we derive a formal result, Eq. 2 already

provides a heuristic ‘‘stopping rule’’ for biodiversity

sampling: Sampling will be complete when every species

is represented by at least two individuals (no singletons),

so that f̂0 ¼ 0 and Sest ¼ Sobs. No additional sampling

effort is needed once this condition is satisfied, as there

are no additional undetected species. Because f̂0 ¼ f 2
1 /

(2f2) may not be an integer, the condition f̂0 ¼ 0 in data

analysis is modified to f̂0 , 0.5. That is, when there are

fewer than 0.5 species remaining undetected, the

sampling is deemed complete and no additional effort

is needed. When f̂0 � 0.5, the problem is to estimate the

additional number of individuals needed to observe the

remaining, undetected species. Applying the above

stopping rule for completeness, sampling should contin-

ue until singletons vanish. As we will see, this may

require a very large additional sample size, because by

the time the total sampling effort is extensive enough to

reveal two individuals of each species found only once in

the original sample, single individuals of additional

species will have inevitably surfaced. For hyperdiverse

communities with a large proportion of very rare

species, the challenge of estimating richness from sample

data is daunting (Mao and Colwell 2005).

According to Good (1953, 2000), Alan Turing studied

aspects of this problem in the context of deciphering

encoded messages intercepted from the German military

during World War II. Assume that an original sample of

size n is available. Turing (and others) proved that, for

the next individual sampled, the probability of encoun-

tering each of the fr species in frequency class r, r ¼ 0, 1,

. . . is approximately

ðr þ 1Þfrþ1=ðnfrÞ: ð3Þ

As a special case, the probability of encountering each of

the undetected species (r ¼ 0) is thus f1/(nf0). Because

there are f0 species in the frequency class r ¼ 0, the

probability q0 that the next individual sampled repre-

sents a previously undetected species can be estimated by

q0 ¼ f0 3 f1=ðnf0Þ ¼ f1=n: ð4Þ

Good (1953, 2000) interpreted Eq. 3 in the following

way: the relative abundance (or discovery probability) of

any species in the frequency class r is approximately (r þ
1)frþ1/(nfr). A remarkable implication for r ¼ 0 is that the

relative abundance for each undetected species f2TD
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species in the additional sample of size mg approximately

equals

f̂0 1 � exp � mg

n

2f2
f1

� �� �� �
: ð11Þ

From Eq. 11, the additional number of individuals

needed to detect a fraction g of Sest is obtained from the

following equation:

f̂0 1 � exp � mg

n

2f2
f1

� �� �� �
¼ gSest � Sobs:

This gives the following solution:

mg ’
nf1
2f2

log
f̂0

ð1 � gÞSest

" #
: ð12Þ

Incidence data

In most biodiversity studies, individual organisms are

not sampled randomly and independently, as required

by our sampling model and by most statistical models

for biodiversity estimation. Instead, multiple individuals

are collected or censused in traps, baits, quadrats, plots,

or timed surveys. It is these sampling units, and not the

individual organisms, that are actually sampled ran-

domly and independently. For very abundant organisms

(such as microbes), or taxa with clonal growth forms

(such as many plants and invertebrates), it may not even

be possible to count individuals within each sampling

unit, and only their presence or incidence can be

recorded. However, estimation is still possible for a set

of replicated samples in which the incidence of each

species is recorded in the sample.

When applied to incidence data based on t replicated

samples, let Q1 and Q2 represent the number of species

that occur in exactly one sample (‘‘uniques’’) or in

exactly two samples (‘‘duplicates’’), respectively (Colwell

and Coddington 1994). For replicated incidence data,

the estimator of species richness, known as Chao2,

incorporates a correction for small sample size

Sest ¼ Sobs þ ð1 � 1=tÞQ2
1=ð2Q2Þ: ð13Þ

Parallel arguments and results allow estimation of m (for

incidence data, m is the number of samples needed to

achieve Sest ¼ Sobs, and mg is the number of samples

needed to achieve gSest). (Details of the derivation are

provided in the Supplement.) For replicated incidence

data, the probability q0 that the next incidence (the next

species collected, regardless of its abundance) represents

a previously undetected species is q0 ¼ Q1/T, where T ¼Pt
i¼1iQi denotes the total number of incidences in t

samples. Thus, q0 also represents the proportion of

previously undetected species in an additional sample.

The additional number of samples needed to reach the

asymptotic ChaoTm
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100% (g ¼ 1) and 95% (g ¼ 0.95) of Sest. Table 3 shows

the average results (over 1000 subsample runs) for
abundance data (Fisher’s Lepidoptera data set) for g ¼ 1

and g ¼ 0.95. Table 4 shows the results for incidence

data, based on the BCI tree data set, for g ¼ 1 and g ¼
0.95, for 50 3 50 m quadrats. In Table 5, we compare

analyses based on both abundance data and the

corresponding incidence data for the BCI tree data set
(for g ¼ 1), for 25 3 25 m quadrats, in order to

investigate the sensitivity of our method to spatial

aggregation of individuals.

Ideally, we would compare the estimated additional

sample size (as calculated from our equations) with the
simulated sample size (which is obtained by continuing

our simulated process until we reach the target).

However, in some data sets, the estimate Sest may
exceed the observed number of species in the full data

set, so that the simulated size is not attainable (because

we can never reach a species richness higher than the full
observed species richness in the inventory or in the

census). Therefore, we used an alternative metric: the

achieved number of species (or equivalently, the

TABLE 3. Simulation results based on the Fisher et al. (1943) Lepidoptera abundance data set (15 609 individuals, 240 species).

n Sobs

g ¼ 1 g ¼ 0.95

Target Sest Estimated m Achieved Sest Achieved g Target gSest Estimated mg Achieved gSest Achieved g

750 119.3 165.6 5378 198.7 1.21 157.3 1415 161.1 0.98
1500 148.3 188.4 9236 214.6 1.15 179.0 2098 180.9 0.96
3000 175.4 209.4 16 593 227.4 1.09 199.0 3166 199.1 0.95
5000 193.8 222.3 24 888 233.4 1.05 211.1 3935 209.7 0.95
6000 199.7 225.4 28 017 234.9 1.04 214.1 3966 212.5 0.95
7000 204.4 227.7 30 980 235.9 1.04 216.3 3924 215.1 0.95
8000 208.6 229.8 33 266 236.6 1.03 218.3 3710 217.2 0.95

10 000 214.4 233.1 39 637 237.8 1.02 221.5 3681 220.5 0.95
15 000 223.7 237.6 51 914 238.9 1.01 225.7 2944 226.2 0.95
20 000 228.9 239.5 60 372 239.3 1.00 227.5 � � �
50 000 238.6 240.6 57 931 239.7 1.00 228.6 � � �

100 000 239.9 240.1 15 209 240 1.00 228.1 � � �
200 000 240.0 240.0 0 240 1.00 228.0 � � �
300 000 240.0 240.0 0 240 1.00 228.0 � � �

Notes: Each row represents the average of 1000 simulation runs. Abbreviations are: n, size of the random subsample; Sobs,
average number of species in the subsample; target Sest



achieved g) when the estimated additional sampling has

been carried out in the simulation. Thus, if the estimator

is performing well, for any fixed value of g (including g ¼
1), we should find the achieved species richness is very

close to our target gSest with an observed value of g very

close to the anticipated g value.

We found that, as subsample size is increased and

more information is collected, the estimated asymptotic

target gSest (including g ¼ 1) increases accordingly

(Tables 3, 4, and 5). Thus, the estimated additional

sampling effort needed to reach the target gSest initially

increases with subsample size. This result reflects a

general property of species accumulation curves: They

typically have initially steep slopes because common

species are quickly sampled, but their slopes decrease at

large sample sizes because much greater effort is needed

to sample the remaining rare species (Gotelli and

Colwell 2001). For the target of complete sampling (g

¼ 1), up to a critical point, as Sest is approaching the true

species richness, the estimated effort starts to decline and

eventually falls to 0. In all of our analyses, these critical

points correspond to very large subsample sizes,

implying that the search for rarest species requires

substantial effort. However, if the target is set to be 95%

of Sest (g ¼ 0.95), then the additional effort needed is

much less than the level required for complete sampling.

When subsample sizes are relatively small, our

estimates are conservative in the sense that the required

additional sampling effort is slightly overestimated, up

to a maximum of 20%, as shown for the smallest samples

in Tables 3, 4, and 5. When sample size is increased,



However, the achieved g values performed adequately

and differ little from those based on incidence sampling

(Figs. 1 and 2).

DISCUSSION

Biodiversity sampling is an important, but labor-

intensive activity, and the sampling effort may have to

be increased several-fold in order to detect all of the rare

species in the tail of the rank abundance distribution, as

we have shown in the simulation study. The methods

presented here can provide guidance regarding how

much additional sampling would be minimally required

to detect all of the species (or a specified target

proportion) present in an area.

We applied our method to two ecological sampling

protocols: (1) Individuals are sampled independently

from the study community and abundance data are

recorded (abundance data); and (2) the community is

sampled multiple times and incidences are recorded
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