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aspects of communities through time and across space 
(Ackerly 2003, Blois et   al. 2013a, Dalsgaard et   al. 2013). 
However, interactions among species also have played a 
major role in structuring community composition and 
functioning (Jablonski 2008, Blois et   al. 2013c, Wisz et   al. 
2013). Given recent interest in understanding how climate 
change may lead to new biotic interactions and unexpected 
ecological dynamics (Zarnetske et   al. 2012, Blois et   al. 
2013c), there is a critical need to disentangle the joint eff ects 
of abiotic and biotic factors on community dynamics. 

 Previous work on assemblage structure has quantifi ed 
community pattern as a single index  –  such as the number 
of species or the number of checkerboard pairs  –  that is 
then subject to null model analysis. Even a moderately-
sized assemblage (e.g. a dataset with multiple sites and 
multiple species at each site) contains many potential 
species pairs, however, each of which may exhibit positive, 
negative, or random associations. In many cases, single 
metrics that summarize an entire assemblage can be decep-
tive (Ulrich and Gotelli 2012), and it is more instructive 
to analyze individual pairs of species (Sfenthourakis et   al. 
2006). Gotelli and Ulrich (2010) use an empirical Bayes 
approach (Efron 2005) to control for the potentially large 
number of false positives that can emerge with the analysis 
of many species pairs. Th is kind of analysis allows for a 
determination of the relative frequency of positively, nega-
tively, and randomly associated species pairs. However, 
non-random species associations are not necessarily caused 
by species interactions. Th us, a central dilemma is how 
to distinguish non-random species associations produced 
by actual species interactions from those produced by 
environmental fi ltering or dispersal limitations. All three 
processes can operate singly or in concert to generate both 
positive and negative species associations. 

 Ecologists working with modern faunas often explicitly 
or implicitly limit comparisons to a set of environmentally 
similar and spatially adjacent sites for which dispersal limita-
tion is unlikely to be important (Phillips et   al. 2003, Zhang 
et   al. 2011). In such systems, it is reasonable to attribute 
non-random species associations to species interactions. 
Th e eff ects of species interactions certainly can be scaled 
up to larger spatial and temporal domains (Jablonski 2008, 
Gilman et   al. 2010, Baiser et   al. 2012, Blois et   al. 2013c), 
and MacArthur (1972) argued explicitly for this scaling in 
his fi nal book, Geographical ecology. However, the eff ects 
of environment, dispersal, and history become progressively 
more important at larger spatial and temporal scales, and it 
is diffi  cult to untangle them from the eff ects of species 
interactions (Ricklefs 2004). 

 Th is dilemma is illustrated clearly in fossil records. 
Th ese records usually encompass timescales at which 
environment, dispersal, and biotic interactions are all 
potentially important controls on species distributions 
and the associations among species, yet usually their eff ects 
cannot be directly observed. Often we have information 
only about species occurrences across space and through 
time, and perhaps information about past environments. 
Only rarely can we infer actual biotic interactions in fossil 
systems (Wilf et   al. 2001, Kowalewski 2002, Currano et   al. 
2010, Pe ñ alver et   al. 2012, Blois et   al. 2013c), making it 
diffi  cult to confi dently attribute the causes of past species 

associations to the infl uence of environmental similarity, 
interactions with other species, or other factors. 

 Here, we provide a framework for inferring the impor-
tance of biotic interactions, dispersal limitation, and 
abiotic eff ects on positive and negative species associa-
tions. Th is framework can be applied to species associa-
tions measured at any spatial or temporal scale, but we 
illustrate it in an analysis of eastern North American 
plant assemblages based on fossil pollen data from the 
past 21 000 yr. Previous work on both individual species 
and communities has demonstrated that changes in fos-
sil pollen assemblages across space and time are tightly 
linked with climate, particularly in the latest Pleistocene 
and early Holocene (Grimm et   al. 1993, Williams et   al. 
2002, Shuman et   al. 2004, Yu 2007, Blois et   al. 2013a). 
Indeed, the tight linkages between vegetation and climate 
make fossil pollen data an excellent proxy for reconstruct-
ing past climates (Viau et   al. 2006, Bartlein et   al. 2011). 
Additionally, the recognition of individualistic species 
responses to deglaciation, the resulting formation of no-
analog communities during the Pleistocene – Holocene 
transition, and the attribution of these communities to 
no-analog climates (Williams et   al. 2004) suggest that 
species interactions should not be dominant drivers of 
community patterns, especially during the height of the 
no-analog period from 17 – 11 kyr BP. Other evidence sug-
gests that not all changes in vegetation can be attributed 
exclusively to climate. For example, at several sites in the 
Great Lakes region, the loss of megaherbivores and their 
associated species interactions at the end of the Pleistocene 
may have contributed to the formation of no-analog plant 
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 Methods  

 Theoretical framework  

 Null model analyses of species co-occurrence 
 A large literature on null model analyses of species co-
occurrence has accumulated over the past 80 yr (Harvey 
et   al. 1983, Gotelli and Graves 1996). Th e initial impetus 
for these analyses was to ask whether co-occurrence patterns 
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 Site classifi cations 
 For any particular pair of non-random species, each site 
can be assigned to one of four mutually exclusive classes, 
based on the presence of one species (1,0) or (0,1), both 
species (1,1) or neither (0,0) (Fig. 1). Th e average char-
acteristics of sites assigned to these 4 classes will generate 
additional patterns that can be used to distinguish among 
diff erent causes of non-randomness. If the site characteris-
tics are measured as continuous variables (such as average 
annual precipitation), sets of sites can be compared with 
ANOVA or t-tests. If the site characteristics are measured 
as discrete variables (such as depositional environment 
for fossil materials), sets of sites can be compared with a 
2-way contingency table analysis. In each case, the analysis 
will pinpoint whether characteristics of sites vary system-
atically based on the presence or absence of each species 
member in the pair. 

 For segregated species pairs, the critical comparison is 
between sites that have one species (1,0) and sites that have 
the other species (0,1) (i.e. allotopic sites). If species interac-
tions are the critical factor in producing segregation, these 
two classes of allotopic sites should not diff er systematically 
in either their environmental characteristics or their spatial 
arrangement. Such species interactions might include pair-
wise competition or predation, but also might refl ect indi-
rect eff ects of other species. For aggregated species pairs, the 
critical comparison is between sites that have both species 
(1,1) (i.e. syntopic sites) and sites that have neither species 
(0,0). If species interactions are important in producing 
aggregation, these syntopic and empty sites should not diff er 
systematically in either their environmental characteristics or 
their spatial arrangement. Such pairwise interactions might 
include pairwise mutualism or commensalism (or even 
predation), but also might refl ect indirect eff ects of other 
species.   

 Environment tests 
 For each site within a data matrix, we have diff erent mea-
sures of environment, either continuous (e.g. annual pre-
cipitation or temperature, as in this study; see Climate 
and distance data) or categorical (e.g. soil type or deposi-
tional environment). In the case of continuous measures, 
a one-way ANOVA can be used to compare the environ-
ment between the allotopic sites of segregated pairs ((1,0) 
vs (0,1)) and between the syntopic sites and empty sites of 
aggregated pairs ((1,1) vs (0,0)). Th e null hypothesis is that 
site characteristics do not diff er systematically between these 
pairs of site classifi cations. For the categorical measures, a 
two-way contingency table can be used to classify the sites. 
For the segregated species pairs, we counted the frequency 
of each environmental type for the two kinds of allotopic 
sites ((1,0) and (0,1)). For the aggregated species pairs, 
we counted the frequency of each environmental type for 
the syntopic sites (1,1) and the empty sites (0,0). For both 
kinds of two-way data tables, we used a chi-square test of 
association. Th e null hypothesis was that the frequencies of 
diff erent environmental types did not diff er among the site 
classes. If this null hypothesis is rejected, a parsimonious 
interpretation is that environmental associations are at least 
partly responsible for segregated or aggregated patterns of 
species occurrence (Fig. 1, 2).   

many statistical tests is quite high. A similar problem arises 
in the analysis of microarrays, in which the expression 
levels of thousands of potentially non-independent genes are 
assayed with parametric or non-parametric statistical tests 
(Kammenga et   al. 2007). For null model analysis of the co-
occurrence of individual species pairs (Gotelli and Ulrich 
2010), we adapted an empirical Bayes approach originally 
proposed by Efron (2005) for this problem of screening large 
numbers of non-independent tests. In brief,  C -scores for 
each species pair are rescaled to a [0,1] range and binned into 
histogram categories. Next, the simulated data are binned 
in a similar way, and the mean and 95% confi dence inter-
val of the  C -scores of simulated species pairs in each bin is 
calculated. Finally, the original  C -score values within each 
bin are ordered from smallest to largest  C -scores. For the 
Pairs analysis, pairs of species are retained whose  C -scores 
are above the simulated mean for the bin (Bayesian mean 
criterion), and which would be statistically signifi cant if the 
species pair was treated as an independent test. Th is  ‘ double 
screen ’  reduces some of the false positives that would arise by 
simply retaining all species pairs for which the uncorrected 
association (aggregated or segregated) yielded p    �    0.05. For 
the bins that are near 0.0, these largest  C  scores will repre-
sent aggregated species pairs. For the bins that are near 1.0, 
these largest  C  scores will represent segregated species pairs. 
Th is is less conservative than a cut-point based on the 95% 
confi dence interval for bin deviations, but more conservative 
than an unadjusted count of signifi cant pairs, and usually 
more conservative than a sequential Bonferroni correction 
in which the pairs are ordered by their p values and a cutoff  
is imposed that is determined by both the individual p-value 
and its rank. Benchmark tests of the Pairs algorithm show 
that it is eff ective (though not perfect) at controlling for 
false positives while still allowing for detection of a relatively 
small subset of non-random species pairs from a binary 
presence – absence matrix (Gotelli and Ulrich 2010). We 
ran the Pairs analysis for each data matrix to identify the 
subset of species pairs that exhibited strong aggregation or 
segregation.   

 Identifying the causes of non-randomness 
 Null model analysis has been a successful tool for 
identifying non-random patterns of species associations. 
But the analysis cannot, by itself, point to the causes of 
such segregated or aggregated patterns. Here we consider 
explicitly two major classes of mechanisms that might 
lead to non-random associations of species pairs: disper-
sal limitations and habitat or climate (environmental) fi l-
tering of species into groups with similar environmental 
niches. All signifi cant pairs that did not show signals of 
signifi cant environmental variation or dispersal limita-
tion may provide evidence of a signifi cant species interac-
tion, though it is also possible that environmental factors 
not considered in this analysis could contribute to non-
random associations. To infer the roles of environmen-
tal factors and dispersal limitation, we move beyond the 
results of the standard null model tests with additional 
analysis of the characteristics of the sites. As described 
below, we focus specifi cally on subsets of sites that 
diff er signifi cantly in either environmental characteristics 
or spatial location.   
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  Figure 1.     Hypothetical patterns of species associations on the landscape under nine scenarios.  
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  Table 2. The proportion of segregated and aggregated pairs that can be attributed to climate, dispersal limitation, both, or neither process 
through time. Note that the total number of segregated or aggregated pairs per time slice may be different than the totals in Table 1 because 
statistical signifi cance could not be assessed for some taxon pairs.  

Age 
(kyr BP)

Proportion of segregated pairs Proportion of aggregated pairs

Distance Climate Both Neither Distance Climate Both Neither

0 0 0 1 0 0 0.1 0.9 0
1 0 0 1 0 0 0 1 0
2 0 0 1 0 0 0 0.9474 0.0526
3 0 0 1 0 0 0 1 0
4 0 0 1 0 0 0 1 0
5 0 0 1 0 0 0 0.96 0.04
6 0 0 1 0 0 0 1 0
7 0 0 1 0 0 0 0.9375 0.0625
8 0 0 1 0 0 0 0.92 0.08
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  Table 3. The taxon pairs involved in signifi cant segregations or 
aggregations through time.  

Age 
(kyr BP)

Segregated 
pairs

Aggregated 
pairs

0   –    –  
1   –    –  
2   –   Vaccinium, 

Chamaedaphne.calyc 
3   –    –  
4   –    –  
5   –   Vaccinium, 

Chamaedaphne.calyc 
6   –    –  
7   –   Epilobium, Symphoricarpos 
8   –   Ranunculus, Stellaria; 

 Sambucus, Hypericum 
9   –   Nyssa, Hypericum; 

 Potentilla, Prunus 
10   –    –  
11   –   Bidens, Xanthium; 

 Dalea, Xanthium; 
 Iva, Xanthium; 
 Sambucus, Hypericum 

12   –   Bidens, Xanthium 
13   –   Bidens, Xanthium; 

 Celtis, Cornus; 
 Eriogonum, Stachys 

14   –   Fraxinus, Acer; 
 Bidens, Sambucus; 
 Bidens, Xanthium; 
 Sambucus, Spiraea; 
 Sambucus, Prunus; 
 Spiraea, Prunus 

15  Corylus, Ilex  Viburnum, Bidens; 
 Polygonum, Bidens 

16  Artemisia, Tilia;  
 Fraxinus, 
Juniperus.Thuja 

 Ostrya.Carpinus, Fraxinus 

17   –    –  
18   –    –  
19   –   Xanthium, Galium 
20  Carya, Spiraea   –  
21   –    –  

unsurprising. Th e method of testing individual pairs imposes 
a strong screen for type I error, but more importantly, most 
taxa occur in relatively few sites. For good statistical reasons, 
it is diffi  cult to assert that segregated pairs are non-random 
when both members of the pair are relatively rare, though we 
can detect aggregation more easily in this case. But without 
any additional evidence, the most parsimonious interpreta-
tion of the observation that two rare species do not co-occur 
frequently is that the pattern is due to chance. Th us, our 
approach is an inherently conservative method to begin with, 
but avoids falsely attributing biological processes to patterns 
that are more parsimoniously accounted for by simple 
sampling properties of the data. 

 Of the non-random subset, there were more aggregated 
than segregated pairs in most time periods (Table 1, Fig. 
3). Th ese results for fossil assemblages form an interesting 
contrast with a recent meta-analysis of pairwise associations 
in 272 presence – absence matrices for modern assemblages 
(Gotelli and Ulrich 2010). In modern assemblages, most 
species pairs also showed random associations, although 

these tended to be concentrated in data matrices from a 
relatively small number of studies. However, the non-
random fraction for modern assemblages was dominated 
by segregated species pairs, with a 4-fold excess of per-
fectly segregated checkerboard pairs compared to the most 
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If we had imposed a false discovery screen for both the 
environmental and spatial overlap tests, we might have 
found more pairs that would be classifi ed as examples of 
biotic interactions. However, most taxon pairs showed 
strong eff ects of both spatial and environmental segrega-
tion, so there would not be that many pairs classifi ed as non-
signifi cant by both tests after screening for false positives. 

 Taxon aggregations were also infrequent, but more com-
mon than segregations. In 12 of 22 time slices there were 
taxon pairs for which aggregations could not be attributed to 
climate or large-scale spatial overlap between syntopic versus 
empty sites. Th ese were most common between 16 and 11 
kyr BP. Such pairs might refl ect positive biotic interactions 
such as direct mutualisms, indirect eff ects such as shared 
pollinators or exclusion from the same sites due to a shared 
competitor or predator, or unmeasured habitat or climatic 
associations. Th e occurrence of potential positive biotic 
interactions in the latest Pleistocene could also provide sup-



1107

IB
S special issue

  Cardillo, M. and Meijaard, E. 2010. Phylogeny and co-occurrence 
of mammal species on southeast Asian islands.  –  Global Ecol. 
Biogeogr. 19: 465 – 474.  



1108

IB
S 

sp
ec

ia
l 

is
su

e

implications for species distribution modelling.  –  Biol. Rev. 
88: 15 – 30.  

  Yu, Z. 2007. Rapid response of fore


