


What have we left out?
There are quite a few implementation details we've left out but the most 
important thing we've left out of our discussion so far is: what to do when 
hashing two different keys yields the same value? This is a challenge for 
hash tables called "hash collisions" or just "collisions."


We'll learn more about collisions and what to do when they occur in future 
lectures. It turns out there are many diff



What have we left out?
There are quite a few implementation details we've left out but the most 
important thing we've left out of our discussion so far is: what to do when 
hashing two different keys yields the same value? This is a challenge for 
hash tables called "hash collisions" or just "collisions."


We'll learn more about collisions and what to do when they occur in future 
lectures. It turns out there are many different strategies -- called "collision 
resolution policies," and we'll look at some of the most common ones.



Collisions are inevitable



Separate Chaining

Instead of holding just one 
object, allow elements in our 
hash table to hold more than 
one object.



Separate Chaining

0 1 2 3 4 5 6



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

13 : 13 mod 7 = 6



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

179 : 179 mod 7 = 4

13



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

179 : 179 mod 7 = 4



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

114 : 114 mod 7 = 2

13179



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

114 : 114 mod 7 = 2

13179114





Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

5 : 5 mod 7 = 5

13179114 5



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

20 : 20 mod 7 = 6

13179114 5





Separate Chaining

0



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

73 : 73 mod 7 = 3

13 
20

179114 573



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

180 : 180 mod 7 = 5

13 
20

179114 573





Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

48 : 48 mod 7 = 6

13 
20

179114 5 
180

73



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

48 : 48 mod 7 = 6

13 
20 
48

179114 5 
180

73



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

46 : 46 mod 7 = 4

13 
20 
48

179114 5 
180

73



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

46 : 46 mod 7 = 4

13 
20 
48

179 
46

114 5 
180

73



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

88 : 88 mod 7 = 4

13 
20 
48

179 
46

114 5 
180

73



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

88 : 88 mod 7 = 4

13 
20 
48

179 
46 
88

114 5 
180

73



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

196 : 196 mod 7 = 0

13 
20 
48

179 
46 
88

114 5 
180

73



Separate Chaining

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

196 : 196 mod 7 = 0

13 
20 
48

179 
46 
88

114 5 
180

73196



Separate Chaining
Insertion takes constant time


• Calculating hash takes constant time


• Inserting into vector takes constant time


But what about duplicate values?


What about find and remove?



Separate Chaining
Insertion takes constant time


• Calculating hash takes constant time


• Inserting into vector takes constant time


But what about duplicate values? We have to search through the bucket.


What about find and remove?



Separate Chaining
Insertion takes constant time


• Calculating hash takes constant time


• Inserting into vector takes constant time


But what about duplicate values? We have to search through the bucket.


What about find and remove? We have to search through the bucket.



Separate Chaining
If we have a table of size b (b for the number of buckets) and we have n 
objects we wish to store, then on average a bucket will store n / b objects.


If we use linear search to check to see if an object is already in our bucket 
before insertion that's O (n / b). 



Separate Chaining
If we have a table of size b (b for the number of buckets) and we have n 
objects we wish to store, then on average a bucket will store n / b objects.


If we use linear search to check to see if an object is already in our bucket 
before insertion that's O (n / b). 


We also have to search through a bucket when finding or removing.


 
Note that the book uses a linked list for buckets; here we're using vectors. 
But this doesn't change the fact that in either case we still need to search.



Summary
• Separate chaining uses a vector of vectors (or a vector of linked lists) to 

handle collisions.


• Objects with the same index calculated from the hash function wind up in 
the same bucket (again, whether it's a vector or linked list).


• This requires us to search on each insertion, find, or remove operation.


• Separate chaining is easy to implement. 



Questions
• If we sorted our buckets, we could improve search time to O (log (n / b)) 

using binary search or O (log log (n / b)) using interpolation search. Does it 
make sense to do this? Why or why not?


• Can you think of other ways we might handle collisions that don't require 
the use of buckets?


