
CS 124 / Department of Computer Science

Hash Tables: Rehashing

Questions from our previous video
• What can we do when we run out of space in our hash table?

• If we set our stride to some value greater than one, why is it a good idea to
have a hash table size that's a prime number?

Questions from our previous video
• What can we do when we run out of space in our hash table?

• If we set our stride to some value greater than one, why is it a good idea to
have a hash table size that's a prime number?

Why prime numbers are good sizes

0 1 2 3 4 5 6

Why prime numbers are good sizes

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

size = 11 (prime)

size = 12 (not prime)

stride = 2

Why prime numbers are good sizes

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

size = 11 (prime)

size = 12 (not prime)

stride = 2

Why prime numbers are good sizes

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

size = 11 (prime)

size = 12 (not prime)

stride = 2

Why prime numbers are good sizes

Why prime numbers are good sizes

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

size = 11 (prime)

size = 12 (not prime)

stride = 2

Why prime numbers are good sizes

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

size = 11 (prime)

size = 12 (not prime)

stride = 2

Why prime numbers are good sizes

Now on to reashing....

Rehashing
The more entries we have in our hash table, the more likely it is that we
have a collision on our next insert.

The more entries we have in our table, the longer the typical probe
sequence becomes for inserting, finding, and removing entries.

Rehashing
The more entries we have in our hash table, the more likely it is that we
have a collision on our next insert.

The more entries we have in our table, the longer the typical probe
sequence becomes for inserting, finding, and removing entries.

Performance degrades!

Rehashing
We set a limit -- a maximum value -- for our load factor (a.k.a. fill percentage)

On inserts, we check our load factor. If it exceeds this limit, we create a new
bigger table, and we insert all the objects from the old table into the new
table.

Since the table size changes, the index calculated from our hash function will
change for each item, hence the term "rehashing." All objects will get a new
hash value when inserted into the new table.

Rehashing
We set a limit -- a maximum value -- for our load factor (a.k.a. fill percentage)

On inserts, we check our load factor. If it exceeds this limit, we create a new
bigger table, and we insert all the objects from the old table into the new
table.

Since the table size changes, the index calculated from our hash function will

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prim0 Tm2M79w.oeTuse this as a size for our new table.

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

11 22

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

11 22 23

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

11 22 23

17

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

11 22 23

17 34 37

21

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

11 22 23

Rehashing
As a rule of thumb, we take the old table size, double it and then find the next
prime number and use this as a size for our new table.

Old size 2 x old size Next prime

11 22 23

17 34 37

21 42 43

103 206 211

Rehashing

0 1 2 3 4 5 6

Hash function: 
f(x) = x mod 7

Max. load factor (fill percentage): 50%

Rehashing

0 1 2 3 4 5 6 Hash function: 
f(x) = x mod 7

Load: 28.6%

Max. load factor (fill percentage): 50%

198

Rehashing

0 1 2 3 4 5 6 Hash function: 
f(x) = x mod 7

Load: 42.9%

Max. load factor (fill percentage): 50%

198 11

Rehashing

0 1 2 3 4 5 6 Hash function: 
f(x) = x mod 7

Load: 57.1%

Max. load factor (fill percentage): 50%

198 1117

Time to rehash!

Rehashing

0 1 2 3 4 5 6 Hash function: 
f(x) = x mod 7

Load: 57.1%

Max. load factor (fill percentage): 50%

198 1117

Time to rehash!

7 x 2 = 14

Rehashing

0 1 2 3 4 5 6 Hash function: 
f(x) = x mod 7

Load: 57.1%

Max. load factor (fill percentage): 50%

198 1117

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Hash function: 
f(x) = x mod 17

Load: 0.0%

Rehashing

0 1 2 3 4 5 6 Hash function: 
f(x) = x mod 7

Load: 57.1%

Max. load factor (fill percentage): 50%

198 1117

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Hash function: 
f(x) = x mod 17

Load: 5.8%
8

Rehashing

0 1 2 3 4 5 6 Hash function: 
f(x) = x mod 7

Load: 57.1%

Max. load factor (fill percentage): 50%

198 1117

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Hash function: 
f(x) = x mod 17

Load: 17.6%
817 11

Rehashing

0

Rehashing Max. load factor (fill percentage): 50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Hash function: 
f(x) = x mod 17

Load: 23.5%
817 1119

Rehashing

Rehashing
Rehash as needed on inserts to keep load factor below threshold

Typically we use load factors between 50% and 75% as thresholds

If we use 50% as our threshold, this means that at least half of our
hash table will be empty at any given time. Why is this good?

• Reduced frequency of collisions

• Shorter probing sequences

What do we need to implement rehashing?

• A function which when given an integer calculates the next prime number

• A method to perform rehashing

• Modify the insert function to check the load factor

