
CS 124 / Department of Computer Science

Hash Tables

Hashing
Hashing is a big subject.

What we will study is how to use hashing to construct and use hash tables. A
hash table is a data structure that provides for access to elements in O (1)
time.

We will not be studying cryptographic hashing, or hashing used for data
security, authentication, blockchain, proof-of-work, or other applications.
That's an entirely different subject. (If you're interested in this, see: CS 166,
CS 167, and CS 266.)

Hashing
We've looked at many ways to find an element in various data structures.
We've seen binary search trees, b-trees, binary search, interpolation search,
and more. These approaches are all based on finding an object within a data
structure.

But what if there were a way to know exactly where to find a given object?

How might that work?

Motivation
In your projects, you've been working with a set of objects that have at least
one unique value for each object.

Let's say you wanted to store a collection of your objects in some data
structure, say a vector.

How would you store your objects in the vector, and how would you retrieve
them?

You could add all your objects to the vector, sort the vector, and then binary
search (or interpolation search if your objects' unique values have a uniform
distribution), but there's a faster way.

Hashing

A hash table stores items in a way
that lets you calculate the item's

index directly.

A hash function is a map

Hash functionKey Address / index

Hash table

A hash function is a map
Hash table

?title: The Blind Watchmaker
author: Richard Dawkins
publisher: W. W. Norton & Co.
year: 1986

A hash function is a map

Hash functionKey Address / index

Hash table

Choosing a size for our hash table
•

•#

Choosing a hash function
• We want a function that takes a key (a string, an integer, even a

combination of multiple values) that returns a value we can use as an index
into our hash table.

• This function should be easy to compute.

• This function should produce outputs that are as close to uniformly
distributed as possible.

• The range of our function should be from 0 to the size of our hash table - 1.

• We want to avoid different keys resulting in the same index.

Choosing a hash function
Let's say we have a table of size 17. The range of outputs for our hash
function should be 0 through 16 -- the valid indices of our hash table. How do
we accomplish this? 
 
We calculate a number and then return that number modulo 17.

A not-so-good hash function
int notSoGoodHash(std::string s, int maxIndex) { 
 int hash = 0;  
 for (const char& c : s) { 
 hash = hash + c;  
 } 
 return hash % maxIndex;  
}

Dog → 10 
Catamount → 5 
Squirrel → 5 
Rabbit → 1 
Toad → 1 
Monkey → 15 
Chipmunk → 15

A better hash function
unsigned long betterHash(std::string s, int maxIndex) { 
 unsigned long hash = 0;  
 for (const char& c : s) { 
 hash = hash * 37 + c;  
 } 
 return hash % maxIndex;  
}

Dog → 11 
Catamount → 9 
Squirrel → 12 
Rabbit → 3 
Toad → 3 
Monkey → 14 
Chipmunk → 7

Horner hash function
unsigned long hornerHash(std::string s, int maxIndex) { 
 unsigned long hash = 0;  
 for (const char& c : s) { 
 hash = hash * 37 + c;  
 } 
 return hash % maxIndex;  
}

Horner hash function
unsigned long hornerHash(std::string s, int maxIndex) { 
 unsigned long hash = 0;  
 for (const char& c : s) { 
 hash = hash * 37 + c;  
 } 
 return hash % maxIndex;  
} "dcba" → d 

 → (37 x d) + c 
 → 37 x ((37 x d) + c) + b 
 → 37 x (37 x ((37 x d) + c) + b) + a

with x = 37

Choosing a hash function
• We want a function that takes a key (a string, an integer, even a

combination of multiple values) that returns a value we can use as an index
into our hash table.

• This function should be easy to compute.

• This function should produce outputs that are as close to uniformly
distributed as possible.

• The range of our function should be from 0 to the size of our hash table - 1.

Inserting
title:

Inserting

title: The Blind Watchmaker
author: Richard Dawkins
publisher: W. W. Norton & Co.
year: 1986

"The Blind Watchmaker" 5

Horner hashKey Address / index

Hash table

http://lulu.com

http://lulu.com

Inserting
title: The Human Condition
author: Hannah Arendt
publisher: University of Chicago
year: 1958

"The Human Condition" 11

Horner hashKey Address / index

Hash table

Inserting

title: The Human Condition
author: Hannah Arendt
publisher: University of Chicago
year: 1958

"The Human Condition" 11

Horner hashKey Address / index

Hash table

Inserting
title: Modern Algebra
author: John R. Durbin
publisher: John Wiley & Sons
year: 1992

"Modern Algebra" 2

Horner hashKey Address / index

Inserting

title: Modern Algebra
author: John R. Durbin
publisher: John Wiley & Sons
year: 1992

"Modern Algebra" 2

Horner hashKey Address / index

Inserting
title: Symbiotic Planet
author: Lynn Margulis
publisher: Basic Books
year: 1999

"Symbiotic Planet" 8

Horner hashKey Address / index

Hash table

Inserting
title: You Are Not A Gadget
author: Jaron Lanier
publisher: Basic Books
year: 1999

Inserting

title: You Are Not A Gadget
author: Jaron Lanier
publisher: Basic Books
year: 1999

"You Are Not A Gadget" 16

Horner hashKey Address / index

Hash table

Inserting - what's the complexity?
What's the complexity of inserting into a hash table?

We have to calculate the hash value: constant time.

We have to perform the insert into the vector: constant time.

Inserting - what's the complexity?
What's the complexity of inserting into a hash table?

We have to calculate the hash value: constant time.

We have to perform the insert into the vector: constant time.

<latexit sha1_base64="HUHkIQ0/PrFUO8EGnb4kfP/J+ao=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEuimJVHRZdOPOCvYBbSiT6aQdOpmEmYlQQ7/EjQtF3Pop7vwbJ20W2npg4HDOvdwzx485U9pxvq3C2vrG5lZxu7Szu7dftg8O2ypKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxJzeZ33mkUrFIPOhpTL0QjwQLGMHaSAO73A+xHhPM07sZqrpnA7vi1Jw50Cpxc1KBHM2B/dUfRiQJqdCEY6V6rhNrL8VSM8LprNRPFI0xmeAR7RkqcEiVl86Dz9CpUYYoiKR5QqO5+nsjxaFS09A3k1lMtexl4n9eL9HBlZcyESeaCrI4FCQc6QhlLaAhk5RoPjUEE8lMVkTGWGKiTVclU4K7/OVV0j6vuRc1575eaVzndRThGE6gCi5cQgNuoQktIJDAM7zCm/VkvVjv1sditGDlO0fwB9bnD5sCkmQ=</latexit>

O(1)

Finding

"The Blind Watchmaker" 5

Horner hashKey Address / index

Hash table

Finding

title: The Blind Watchmaker
author: Richard Dawkins

Finding

"Clever Algorithms" 9

Horner hashKey Address / index

Hash table

Finding

title: Clever Algorithms
author: Jason Brownlee
publisher: lulu.com
year: 2011

"Clever Algorithms" 9

Horner hashKey Address / index

Hash table

http://lulu.com

Finding

title: Modern Algebra
author: John R. Durbin
publisher: John Wiley & Sons
year: 1992

"Modern Algebra" 2

Horner hashKey Address / index

Hash table

Finding

"Symbiotic Planet" 8

Horner hashKey Address / index

Hash table

Finding

title: Symbiotic Planet
author: Lynn Margulis
publisher: Basic Books
year: 1999"Symbiotic Planet" 8

Horner hashKey Address / index

Hash table

Finding

"You Are Not A Gadget" 16

Horner hashKey Address / index

Hash table

Finding

title: You Are Not A Gadget
author: Jaron Lanier
publisher: Basic Books
year: 1999

"You Are Not A Gadget" 16

Horner hashKey Address / index

Hash table

Finding

"Moby Dick" 3

Horner hashKey Address / index

Hash table

Finding

"Moby Dick" 3

Horner hashKey Address / index

Hash table

X no entry

Finding - what's the complexity?
What's the complexity of finding an element in a hash table?

We have to calculate the hash value: constant time.

We have to fetch the item stored at that index in the vector: constant time.

Finding - what's the complexity?
What's the complexity of finding an element in a hash table?

We have to calculate the hash value: constant time.

We have to fetch the item stored at that index in the vector: constant time.

<latexit sha1_base64="HUHkIQ0/PrFUO8EGnb4kfP/J+ao=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEuimJVHRZdOPOCvYBbSiT6aQdOpmEmYlQQ7/EjQtF3Pop7vwbJ20W2npg4HDOvdwzx485U9pxvq3C2vrG5lZxu7Szu7dftg8O2ypKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxJzeZ33mkUrFIPOhpTL0QjwQLGMHaSAO73A+xHhPM07sZqrpnA7vi1Jw50Cpxc1KBHM2B/dUfRiQJqdCEY6V6rhNrL8VSM8LprNRPFI0xmeAR7RkqcEiVl86Dz9CpUYYoiKR5QqO5+nsjxaFS09A3k1lMtexl4n9eL9HBlZcyESeaCrI4FCQc6QhlLaAhk5RoPjUEE8lMVkTGWGKiTVclU4K7/OVV0j6vuRc1575eaVzndRThGE6gCi5cQgNuoQktIJDAM7zCm/VkvVjv1sditGDlO0fwB9bnD5sCkmQ=</latexit>

O(1)

Deleting - what's the complexity?
What's the complexity of finding an element in a hash table?

We have to calculate the hash value: constant time.

We have to delete the item stored at that index in the vector: constant time.

<latexit sha1_base64="HUHkIQ0/PrFUO8EGnb4kfP/J+ao=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEuimJVHRZdOPOCvYBbSiT6aQdOpmEmYlQQ7/EjQtF3Pop7vwbJ20W2npg4HDOvdwzx485U9pxvq3C2vrG5lZxu7Szu7dftg8O2ypKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxJzeZ33mkUrFIPOhpTL0QjwQLGMHaSAO73A+xHhPM07sZqrpnA7vi1Jw50Cpxc1KBHM2B/dUfRiQJqdCEY6V6rhNrL8VSM8LprNRPFI0xmeAR7RkqcEiVl86Dz9CpUYYoiKR5QqO5+nsjxaFS09A3k1lMtexl4n9eL9HBlZcyESeaCrI4FCQc6QhlLaAhk5RoPjUEE8lMVkTGWGKiTVclU4K7/OVV0j6vuRc1575eaVzndRThGE6gCi5cQgNuoQktIJDAM7zCm/VkvVjv1sditGDlO0fwB9bnD5sCkmQ=</latexit>

O(1)

What have we left out?
There are quite a few implementation details we've left out but the most
important thing we've left out of our discussion so far is: what to do when
hashing two different keys yields the same value? This is a challenge for
hash tables called "hash collisions" or just "collisions."

We'll learn more about collisions and what to do when they occur in future
lectures. It turns out there are many different strategies -- called "collision
resolution policies," and we'll look at some of the most common ones.

Summary
• A hash table allows for O (1) insertion, access, and deletion of objects.

• A hash table requires a hash function that turns keys into indices.

• Choosing a good hash function is important:

• We want values in its range to be as close to uniformly distributed as
possible.

• The hash function should be easy to compute.

• We have yet to address collisions and collision resolution policies.

Some questions
• You'll recall we said it's best if the size of the hash table is a prime number.

Can you think of any reason why this might be so?

• Random numbers can be more-or-less uniformly distributed. Why don't we
use random numbers for hashing?

• How might we handle collsions when they occur?

