
Complexity Practice
What is the complexity of the following function?

int	sumOfCubes(int	n)	{
				int	partialSum	=	0;
				for	(int	i	=	1;	i	<=	n;	++i)	{
								partialSum	+=	i	*	i	*	i;
				}
				return	partialSum;
}

Even though we're calculating a sum of cubes, this runs in linear tim

								for	(int	j	=	i;	j	<	a.size();	++j)	{
												thisSum	+=	a[j];
												if	(thisSum	>	maxSum)	{
																maxSum	=	thisSum;
												}
								}
				}
				return	maxSum;
}

This is an improved version of algorithm 1, which eliminates some of the redundant calculation
and eliminates one loop. With two nested loops, this will run in order O(n2) time.

/**
	*	Algorithm	3	"Divide	and	conquer"
	*/
int	maxSumRec(const	std::vector<int>	&a,	int	left,	int	right)	{
				//	base	case	for	recursion,	when	we	have	one	element
				if	(left	==	right)	{
								if	(a[left]	>	0)	{
												return	a[left];
								}	else	{
												return	0;
								}
				}
				//	divide	into	two	halves
				int	center	=	(left	+	right)	/	2;
				//	get	the	

	left,									 (abpb	

Aq

	

	if

2

	(t

	ceaCtCba ght)	{ ��

	

��

				

h(aea=C

i

*a

std

					}

	}

i

/

std 			 (aea=C

i

*a

std

,	

			 C

	

	(a}

Though this seems more complex, this is substantially more efficient than either of the two
previous algorithm. It uses a recursive "divide and conquer" approach, and accordingly runs in
O(n log(n)) time. This algorithm is due to Shamos.

Remember what we learned about recursive functions at the beginning of the course, and
notice that this function has a base case, where 	left	==	right	 — In the base case, we return
the value of the one-element subsequence if it is greater than zero, or zero otherwise. This
algorithm also has two recursive calls, so it is multiply recursive.

We call this "divide and conquer" because it divides the problem into two smaller instances,
solves each, and then combines the result. This is where the recursive cases come in. The
working portion of the sequence is divided into halves, and then each half becomes input to a
recursive call.

The remaining code addresses the case where a subsequence may straddle the boundary
between left and right halves. So the function takes the maximum of three results, left, right,
and "middle" — so to speak.

This may seem complicated, but it is far more efficient than either of the two previous
algorithms.

Because we divide recursively the problem in halves, then solve each half and combine the
results, this runs in O(n log(n)) time.

/**
	*	Algorithm	4
	*/
int	kadanesAlgo(const	std::vector<int>	&a)	{
				int	bestSum	=	0;
				int	currentSum	=	0;
				for	(int	i	=	0;	i	<	a.size();	++i)	{
								currentSum	=	std::max(0,	currentSum	+	a��)Cbr+	

r;u={r;+	

int

N<c myj7��jyjd2kmkN2s2mtdckk2srNd

OmKsd

Te ee

ri cavido

beoiv each h ble.

eeK;ficient t w� ror�d�c ve is.

bm co p wcus

�

bm lhe thnp r

Com

				vector<vector<int>>	product;	
				product.resize(nums1.size());	
				for	(int	i	=	0;	i	<	nums1.size();	++i)	{	
								product[i].resize(nums2.size());	
								for	(int	j	=	0;	j	<	nums2.size();	++j)	{	
																product[i][j]	=	nums1[i]	*	nums2[j];	
								}	
				}	
				return	product;	
}

Let's think about what's going on here. We're taking two integer vectors as inputs, and we're
calculating a 2D matrix of the element-wise products of the two vectors. So if we have M
elements in 	nums1	 and N elements in 	nums2	 our result — product — will be an M × N matrix.
Each element in the answer matrix will be the product of corresponding entries in the two
inputs.

Here's an example: If 	nums1	=	{1,	2,	3,	4}	 and 	nums2	=	{5,	0,	2}	, then 	product	 will look
like this:

5 0 2

10 0 4

15 0 6

20 0 8

So time complexity will depend on the size of the two input vectors, that is O(M × N).

What is the auxiliary complexity? Well, we'll need to allocate an M × N matrix to hold the
result, and integers 	i	 and 	j	 to control our loops, and something to hold the results of the
size calculations. But apart from the M × N matrix, these other items are constant and do not
vary with input. Accordingly, M × N dominates, and auxiliary complexity is O(M × N).

Space complexity also includes the input vectors, one of size M, and the other of size N, but
these scale in a linear fashion and again, M × N dominates. Hence, the space complexity is
O(M × N).

This concludes our discussion for now, but rest assured, we'll be spending plenty of time on
complexity throughout the course.

An annotated transcript and source code to accompany this video have been posted on

Blackboard.

