ANALYSIS QUALIFYING EXAM

18 May 2020

Passing at the PhD level is accomplished by solving at least two problems in each section while either solving a total of 6 problems or solving 5 problems and making signi cant progress on two others.

R means the real numbers, **C** is the complex numbers, and **Q** is the rational numbers. If $E \subset X$ is a set then $\chi_E : X \to \mathbf{R}$ means

$$\chi_E(\) := \begin{cases} 1 & \text{if} & E; \\ 0 & \text{if} & X & E. \end{cases}$$

Complex Analysis.

1. Let f be analytic on \mathbf{C} 0 and suppose that, for all \mathbf{C} 0,

$$f() \le ^{-1=3} + ^{3=4}.$$

Show that f is constant.

2. Use residues or a substitution to show that

$$\int_{-\infty}^{\infty} \frac{\log}{1 + 2} d = 0$$

and then use that fact plus residues to show

$$\int_{-\infty}^{\infty} \frac{(\log)^2}{1 + 2^2} d = \frac{\pi^3}{4}.$$

3. Let $f, g : \mathbf{C} \to \mathbf{C}$ be entire and suppose that

$$f() \leq g() + f()$$

for all **C**. Show that f, g is a linearly dependent set: λ_1, λ_2 **C**, not both equal to 0, such that $\lambda_1 f(\) + \lambda_2 g(\) = 0$ for all **C**. (Hint: Divide)

4. Let $:= \mathbb{C}$ ((-,-1] [1,)). Find an analytic bijection $f: \to : > 0$. Express your f as a sequence of compositions, sketching the intermediate domains.

5. Let $f: \mathbf{C} \to \mathbf{C}$ be entire and suppose that, for each

7. De ne

$$f(\) := \frac{+1}{2 + -2}.$$

Find a Laurent expansion for f, of the form

$$\sum_{-\infty}^{\infty} c_n (+1)^n,$$

which converges to f in \mathbf{C}

C: 1 < +1 < 2.

Real Analysis.

8. Let (M,d) be a metric space. Show that, if $A,B\subset M$ are closed and A B= , then there exist open sets U,V such that $A\subset U$, $B\subset V$, and U V= . (Hint: U and V are unions of open balls. How do you choose the radius of each ball?)

9. Let (X, \quad , μ) be a measure space and let $\phi: X \to [0, \quad]$ be measurable. For E de ne $\lambda(E):=\int_E \phi\,d\mu=\int \phi\,\chi_E\,d\mu$. Use standard limit theorems to show that λ de nes a measure on — and that, if $f:X\to [0,\quad]$ is measurable, then

$$\int f \, d\lambda = \int f \, \phi \, d\mu.$$

You may use without proof the fact that there exists a sequence $\psi_n \stackrel{\bullet}{_1}$ of non-negative measurable simple functions such that $\psi_n(\) \leq \psi_{n+1}(\)$ for all $\$ and $\$, and $\psi_n(\) \to f(\)$ pointwise as $\ \to \$.

10. Use standard limit theorems from measure theory and facts from calculus (about the integrals of exponentials, etc.) to show that

$$\int_0^{\infty} \frac{e^{-x}}{1 - e^{-x}} d = \sum_{1}^{\infty} \frac{1}{k^2},$$

where \dot{d} ' means integration with respect to Lebesgue measure. (Hint: Use a geometric series.)

11. Enumerate the rationals $\mathbf{Q} := \begin{bmatrix} 1, & 2, & 3, \dots \end{bmatrix}$, and de ne

$$f(\):=\sum_{1}^{\bullet}\frac{2^{k}}{k^{2}}\chi_{(q_{k}-2^{-k};q_{k}+2^{-k})}(\).$$

Show that

$$\int_{\mathbf{R}} f(\)\, d\ <$$

(where `d' means integration with respect to Lebesgue measure), but that, for every >1 and every non-empty open $U\subset\mathbf{R}$,

$$\int_{U} f(\)^{p} d = .$$

- 12. Let $f:[a,b]\to \mathbf{R}$ be continuous, with $f(a)\leq f(b)$, and suppose that f has no local maximum or minimum on (a,b). Show that f is non-decreasing on all of [a,b]: f(a,b) = f(a,b). (Hint: First show that, if f(a,b) = f(a,b).)
- 13. Let $f:[a,b] \to \mathbf{R}$ be continuous, with $[a,b] \subset \mathbf{R}$ and a < b. Use standard facts about continuous functions and the Riemann integral to show that

$$\lim_{n\to\infty} \left(\int_a^b f()^n d \right)^{1=n}$$

exists and equals $\max_{a;b} f()$.

14. Show that, if $a_k \stackrel{\bullet}{1}$ is any sequence of non-negative numbers and 0 < < < then

$$\left(\sum_{1}^{\bullet\bullet} a_k^q\right)^1$$