- 5. Let x and y be independent indeterminates over the field C of complex numbers, and let $R = C[x, y]/(x^2 y, y^2 x)$.
 - (a) Explain why *R* is a finite dimensional vector space over C, and find its dimension.
 - (b) Prove that R is isomorphic to $\mathbb{C}[x]/(x^4 x)$.
 - (c) Show that *R* is (ring) isomorphic to the direct product of four copies of C.
- **6.** Let *t* be an indeterminate over Q. Classify all finitely generated modules over the ring $Q[t]/(t^9)$.
- 7. (a) Find all possible rational canonical forms for a 4×4 matrix A over Q that satisfies $A^6 = I$ (where I is the identity matrix).
 - (b) Find all possible rational canonical forms for a 4×4 matrix A over F₂ that satisfies $A^6 = I$.

Section C.

- **8.** Let K be the splitting field of $(x^2 3)(x^3 5)$ over Q.
 - (a) Find the degree of K over Q.
 - (b) Find the isomorphism type of the Galois group $Gal(K/\mathbb{Q})$.
 - (c) Find, with justification, all subfields F of K such that [F :

_Alternate Questions _

- **3.** Show that Z_3 and S_3 are the only finite groups with exactly three conjugacy classes. [You may quote without proof the fact that Z_2 is the only finite group with exactly two conjugacy classes.] (too easy?)
- **3.** Find all finite groups *G* such that Aut(*G*) is cyclic.
- 2. If both A and B are abelian and $A \cap B = 1$, prove that AB is abelian.
 - (c) If both A and B are solvable, prove that AB is solvable.
- 4. Let *R* be a commutative ring with 1.
 - (a) Prove that if *R* has only finitely many elements, then every nonzero element of *R* is either a unit or a zero divisor.
- **6.** Describe all irreducible (simple) *R*-modules where R = Z[x] is the integer polynomial ring in the variable *x*.
- **10.** Suppose there were a subfield, F, of C such that [C : F] = 5. You may assume that C is algebraically closed to do the following:
 - (a) Show that F contains a primitive 5th root of unity.
 - (b) Explain why $C = F(\sqrt[5]{})$ for some $\in F$? (You may quote results about solvable extensions.)