
ALGEBRA PH.D. QUALIFYING EXAM

January 13, 2009

A passing paper consists of four problemssolved completely plus signi�c ant progresson two other
problems;moreover, the set of problemssolved completely must include one from each of Sections
A, B and C.

Section A.

In this section you may quote without proof basic theorems and classi�cations from group theory,
group actions, solvablegroups, commutators, etc. as long as you state what facts you are using.

1. Let G be a group of order 10,989(note that 10989= 33 � 11 � 37).

(a) Compute the number, np, of Sylow p-subgroupspermitted by Sylow's Theorem for each
of p = 3, 11, and 37; for each of these np give the order of the normalizer of a Sylow
p-subgroup.

(b) Show that G contains either a normal Sylow 37-subgroupor a normal Sylow 3-subgroup.

(c) Explain brie
y why (in all cases)G has a normal Sylow 11-subgroup.

(d) Deducethat the center of G is nontrivial.

2. Let G be a �nite group.

(a) SupposeA and B are normal subgroupsof G and both G=A and G=B are solvable. Prove
that G=(A \ B ) is solvable.

(b) Deduce from (a) that G has a subgroup that is the unique smallest subgroup with the
properties of being normal with solvable quotient | this subgroup is denoted by G(1 )

(i.e., show there is a subgroup G(1 ) E G with G=G(1 ) is solvable, and if G=N is any
solvable quotient, then G(1 ) � N ).

(Remark: For example,when G is solvable, G(1 ) = 1; or if G is a perfect group, G(1 ) = G.)

(c) If G has a subgroup S isomorphic to A5 (not necessarilynormal), show that S �| note that � neednot �x P
elementwise).

(b) SupposeG is a cyclic group. Prove that G = A � B where

A = C

G (� ) = f g 2 G j � (g) = gg and B = f x 2 G j � (x) = x � 1g:

(Remark: This decomposition is true more generally when G is abelian.)

Section B.

4. Let R be a commutativ e ring with 1.

(a) Prove that each nilpotent element of R lies in every prime ideal of R.

(b) Assumeevery nonzeroelement of R is either a unit or a nilpotent element. Prove that R
has a unique prime ideal.
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5. Let R = C[x; y] be the ring of polynomials in the variablesx and y, soR may be consideredas
C-valued functions on (a�ne) complex2-space,C2, in the usual way (R is called the coordinate
ring of this a�ne space). Let I be the ideal of all functions in R that vanish on both coordinate
axes,i.e., that are zero on the set f (a;0) j a 2 Cg [ f (0; b) j b 2 Cg. (You may assumeI is an
ideal.)

(a) Exhibit a set of generatorsfor I . (Be sure to explain brie
y why they generateI .)

(b) Show that I is not a prime ideal.

(c) Show that R=I has no nilpotent elements.

6. Classify all �nitely generatedR-modules, where R is the ring Q[x]
/

(x2 + 1)2.

7. (a) Find all possiblecanonicalforms for a matrix over F3 with characteristic polynomial x4 � 1.

(b) Find all possiblecanonicalforms for a matrix over F2 with characteristic polynomial x4 � 1.

Section C.

8. Let K = Q(
√

3 +
p

5 ).

(a) Show that K =Q is a Galois extension.

(b) Determine the Galois group of K =Q.

(c) Find all sub�elds of KDeterm065 0 Td
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