Algebra Qualifying Exam | Fall 2019

You have three hours to complete this exam.

When working on later parts of a problem, you may assume the results of earlier parts of the same problem without proof.

PhD Pass:

Section B

- 4. Let *R* be a ring with 1 and let *M* be a **simple** left *R*-module (this means that *M* has no left *R*-submodules other than 0 and *M*).
 - (a) If ': *M* ! *M* is a non-trivial *R*-module homomorphism (i.e. an endomorphism), show that ' is an isomorphism.
 - (b) Show that if $m \ge M$ with $m \ne 0$, then M = Rm.
 - (c) Show that there is a left *R*-module isomorphism $M = R = \mathbf{m}$ for some maximal left ideal \mathbf{m} of R.
- 5. Let $R = \mathbb{R}[x] = (x^4 \quad 1)$, so *R* is a commutative ring with 1.
 - (a) Show that all ideals of *R* are principal.
 - (b) Find a generator for each maximal ideal of *R*.
 - (c) For each maximal ideal **m**, describe an isomorphism from R=m to either \mathbb{R} or \mathbb{C} .
- 6. Let *R* be a commutative ring with 1 which is a subring of the commutative ring *S*. Let *P* be a prime ideal of *S*.
 - (a) Show that $P \setminus R$ is a prime ideal of R.
 - (b) Show that P[x] is a prime ideal of S[x].
 - (c) Show that P[x] is not a maximal ideal of S[x].

Section C

- 7. Let $L = \mathbb{Q}(\stackrel{\mathcal{P}}{\overline{2}}; \stackrel{\mathcal{P}}{\overline{3}})$ and let $= \stackrel{\mathcal{P}}{\overline{2}} \stackrel{\mathcal{P}}{\overline{3}}.$
 - (a) Show that $[L({}^{D}): L] = 2$ and $[L({}^{D}): \mathbb{Q}] = 8$.
 - (b) Find the minimal polynomial of \mathcal{P}_{-} over \mathbb{Q} .
 - (c) Show that $L(^{\mathcal{P}})$ is not Galois over \mathbb{Q} .
- 8. Let be the real, positive fourth root of 5, and let $i = {\overset{\mathcal{D}}{-}1} 2 \mathbb{C}$. Let $\mathcal{K} = \mathbb{Q}(; i)$.
 - (a) Explain why $K=\mathbb{Q}$ is a Galois extension with Galois group dihedral of order 8.
 - (b) Find the largest abelian extension of Q in K (i.e. the unique largest sub eld of K that is Galois over Q with abelian Galetia Dia with abelia