REAL AND COMPLEX VARIABLES PH.D. QUALIFYING EXAM September 17, 2015

Three Hours

A passing paper consists of a total of six problems done completely correctly, or five problems done correctly with substantial progress on two others. At least three problems from each of Section A (Real Analysis) and Section B (Complex Analysis) must count toward the passing criteria, and two of these from each section must be completely correct.

Section A. Real Analysis

- 1. Let () be a metric space, and let $\{r_n\}_{n=1}^{\infty}$ and $\{r_n\}_{n=1}^{\infty}$ be Cauchy sequences in . Prove that the sequence of real numbers $\{r_n\}_{n=1}^{\infty}$ converges in \mathbb{R} . (Do not assume is complete.)
- 2. Let $n: \mathbb{R} \to \mathbb{R}$ be a sequence of functions that converges uniformly to a function $: \mathbb{R} \to \mathbb{R}$. Prove that if the sequence of real numbers $\{a_n\}_{n=1}^{\infty}$ converges to a and is continuous at a, then the sequence $\{a_n\}_{n=1}^{\infty}$ converges to $\{a_n\}_{n=1}^{\infty}$

-3.12 e Tf 5.42055 0 Td (=)

Section B. Complex Analysis

8. Identify explicitly the real and imaginary parts of the function $() = \cos$, and verify any one of the Cauchy-Riemann equations for at an arbitrary point