REAL ANALYSIS PHD QUALIFYING EXAM

September 27, 2008

The test has 10 questions. To pass you must do 7 problems completely correctly or do 6 completely correctly and show substantial progress on 2 others.

1. Let $fa_k g_1^{\uparrow}$ be a sequence of real numbers such that $\bigcap_{i=1}^{P} ja_k j < 1$. Set $s = \bigcap_{i=1}^{f} a_k$. (You don't need to show that *s* exists.) Show that the value of this sum does not depend on the order in which the a_k 's are added. In other words, show that if $\mathcal{A} : \mathbf{N} \not \mathbf{V} \mathbf{N}$ is a pne-to-one mapping of **N** (the natural numbers) onto itself, and we set $b_k = a_{\mathcal{A}(k)}$, then $\int_{1}^{T} b_k$ also equals *s*.

2. Let $f(a_k; b_k)g_1^1$ be a collection of intervals contained in [0; 1], and suppose that

$$(b_k \mid a_k) > 1$$

Show that the set of intervals $f(a_k; b_k)g$ cannot be pairwise disjoint.

3. Let (X; M; 1) be a measure space for which 0 < 1(X) < 1, and suppose that $f \ge L^1(X; M; 1)$. Show that $f \ge L^p(X; M; 1)$ for all p < 1, and also show that

$$\lim_{p! \to 1} kfk_p = kfk_1:$$

4. Let f:[0;1] **/ R** be continuous (with respect to the usual, absolute-value metric) and one-to-one, and suppose that f(0) < f(1). Show that f is strictly increasing on [0;1]; i.e., show that, for all x and y in [0;1], x < y implies f(x) < f(y).

5. Show that, if (X; M; 1) is any measure space, the following two statements, regarding sequences of sets $fE_kg \frac{1}{2}M$, are *equivalent*: a) For all A 2 M such that 1(A) < 1,

$$\lim_{k! \to 1^{-1}} (A n E_k) = 0;$$

b) For all $f \ge L^1(X; M; 1)$, $f \hat{A}_{E_k} \nmid f$ in L^1 as $k \nmid 1$. (Hint: Begin by showing that, if a) holds, b) is true for all integrable simple functions f.)

6. Let (M; d) be a metric space. Show that if $f_{x_k}g \not\geq M$ is any Cauchy sequence, and some subsequence $f_{x_{n_k}}g$ converges to a point $p \ge M$, then the whole sequence $f_{x_k}g$ converges to p.

7. If $E \not\geq \mathbf{R}^d$, a point $x \ge \mathbf{R}^d$ is called a *condensation point* of E if, for all r > 0, $B(x; r) \setminus E$ is uncountable, where $B(x; r) \land fy \ge \mathbf{R}^d$: $kx_j \quad yk < rg$ and $k \notin k$ is the usual Euclidean norm. (Notice that x need not belong to E.) Show that, for any $E \not\geq \mathbf{R}^d$, the set of E's condensations points is closed.

8. Let (X; M; 1) be a measure space, and suppose that ff_ng is a sequence from $L^+(X; M; 1)$, the family of non-negative measurable functions. Show that, if $f_n ! f 2 L^+$ pointwise, and Z Z

$$\lim_{n! \to 1} \int_{X} f_n(x) d^{1}(x) = \int_{X} f(x) d^{1}(x) < 1;$$

$$2M, \qquad Z \qquad Z$$

$$\lim_{n! \to 1} \int_{E} f_n(x) d^{1}(x) = \int_{E} f(x) d^{1}(x):$$

then, for all E 2 M,

You may use standard limit theorems (Fatou, Monotone Convergence, etc.) without proof. 9. Consider the two surfaces in **R**³:

$$\S_1 \quad f(x, y, z) : x \sin z_i \quad y \cos z = 0g;$$

 $\S_2 \quad f(x, y, z) : x^2 + 4y^2 = 1g;$

and let $_{i} = \S_1 \land \S_2$. Show that, for every $(x_0; y_0; z_0) 2_i$, the Implicit Function Theorem implies the existence of a di[®]erentiable, one-to-one $\dot{A}(t) = (\dot{A}_1(t); \dot{A}_2(t))$, de⁻ned on some non-trivial open interval $I = (z_0 \ i \ \pm; z_0 + \pm)$, and mapping into \mathbb{R}^2 , satisfying $\dot{A}(z_0) = (x_0; y_0)$ and such that $(\dot{A}_1(t); \dot{A}_2(t); t) 2_i$ for all $t \ge I$.

10. Let M be the $\frac{3}{4}$ -algebra of subsets of **R** that are countable or have countable complements. De⁻ne⁻¹: $M \not r$ f_0 ; 1g by:

$${}^{1}(E) = {\begin{array}{*{20}c} \frac{1}{2} & \text{if } E \text{ is countable;} \\ 1 & \text{if } \mathbf{R} \ n \ E \text{ is countable.}} \end{array}}$$
(1)