REAL ANALYSIS PHD QUALIFYING EXAM

September 20, 2007

A passing grade is 6 problems done completely correctly, or 5 done completely correctly with substantial progress on 2 others.

1. Let (X; d) be a compact metric space, where we take \compact" to mean \every open cover of X has a -nite subcover." Show that every sequence $\{x_n\}_1^\infty$ in X has a subsequence converging to some $z \in X$.

2a). Let $\{b_n\}$ be a sequence of positive numbers which is *unbounded*: $\sup_n b_n = \infty$. Show that there is a sequence of positive numbers $\{a_n\}$ such that $\sum a_n < \infty$, but for which $\sum a_n b_n = \infty$.

2b) Let $\{c_n\}$ be a sequence of positive numbers such that $\sum c_n = \infty$. Show that there is a sequence of positive numbers $\{d_n\}$ such that $\lim_n d_n = 0$, but for which $\sum c_n d_n = \infty$.

3. Prove the following: If f is di[®]erentiable on (0;1) and f'(1=4) < 0 < f'(3=4), there is a $c \in (1=4;3=4)$ such that f'(c) = 0.

4. Let $\{f_n\}$ be a sequence of functions in $L^p(\mathbf{R}; \mathcal{L}; m)$, where $1 , <math>\mathcal{L}$ is the Lebesgue measurable sets, and m denotes Lebesgue measure. Suppose that

$$\sup_{n} \|f_n\|_p < \infty. \tag{1}$$

Show that $\{f_n\}$ is uniformly integrable, which means: for every $^2 > 0$ there is a $\pm > 0$ such that, for all $E \in \mathcal{L}$, $m(E) < \pm$ implies

$$\sup_n \int_E |f_n| \, dm < 2$$

Also, give an example of an

7. Let $(X; \mathcal{M}; {}^{1})$ be a measure space, and suppose that $\{E_n\}_1^{\infty}$ is a sequence from \mathcal{M} with the property that

$$\lim_{n\to\infty} {}^{\prime}(X \setminus E_n) = 07.35 \cdot 1.49 \text{TDerty that}$$