January 10, 2008 Three hours

There are 11 questions. A passing paper consists of 6 questions done completely correctly, or 5 questions done correctly with substantial progress on 2 others.

Let $fx_n g_{n=1}^{\infty}$ be a bounded sequence in \mathbb{R} . Assume that every convergent subsequence converges to the same real number. Prove that there is a real number L such that the entire sequence converges to L.

[Note: The hypotheses allow the possibility that $f_{x_n}g_{n=1}^{\infty}$ has no convergent subsequences, so your proof must subsume this case.]

• Let f be a real valued function that is continuous on [0, 1] and di erentiable on (0, 1). Assume f(0) = 0 and j f'(x) j = j f(x) j for all x 2 (0, 1). Prove that f = 0 on [0, 1].

Let
$$f_n(x) = \frac{1}{1 + x^{2n}}$$
 for $x \ge \mathbb{R}$.

Find where $\mathbf{f}_{f_n}\mathbf{g}_{n=1}^{\infty}$ converges pointwise, and describe the limit function F(x).

- **b** Describe the intervals in \mathbb{R} on which $\mathbf{f}_{f_n} \mathbf{g}_{n=1}^{\infty}$ converges uniformly to F.
- Suppose f, g and h are bounded real valued functions on [0, 1] with f = g = h. If f and h are Riemann integrable with $\int_0^1 f = \int_0^1 h$, prove that g is Riemann integrable.

Let $F(x, y, z) = (x^2 + z^2 + 4)^2 + xy$ 2008. Find all points (x, y, z) such that the Implicit Function Theorem does not provide a local implicit function f(x, y) = z such that F(x, y, f(x, y)) = 0. Describe this set geometrically as a subset of \mathbb{R}^3 (eg., a sphere, cone, etc.).

Let $g: (0, 1) ! \mathbb{R}$ by

g(x) = n when $x \ge ((n \ 1)^2, n^2]$, for each $n \ge \mathbb{N}$.

Since g is increasing and left continuous let μ be the Lebesgue-Stieltjes measure obtained from g on the semiring of half open intervals:

 $\mu([a, b)) = g(b) \quad g(a), \quad \text{for all } b \quad a > 0.$

Prove that every subset of (0, 1)qta]609b5204.3785001617983)970 / (3) 57 j 1 (9532) (a) 948 f /822 r3j5 102 25502 (.1) ff 7 422

Let λ denote Lebesgue measure on the real line.

-

Prove that there is an open set O that is dense in \mathbb{R} with $\lambda(O) < 1$.

- **b** Let O be any set satisfying the conclusion to part (a). Prove that \mathbb{R} O is uncountable.
- Let O be any set satisfying the conclusion to part (a). Prove that \mathbb{R} O is not compact.