
Ph.D. QUALIFYING EXAM IN REAL ANALYSIS

January 10, 2008

Three hours

There are 11 questions. A passing paper consists of 6 questions done completely correctly,

or 5 questions done correctly with substantial progress on 2 others.

1. Let fxng∞

n=1
be a bounded sequence in R. Assume that every convergent subsequence

converges to the same real number. Prove that there is a real number L such that the

entire sequence converges to L.

[Note: The hypotheses allow the possibility that fxng∞

n=1
has no convergent subse-

quences, so your proof must subsume this case.]

2. Let f be a real valued function that is continuous on [0, 1] and di�erentiable on (0, 1).

Assume f(0) = 0 and j f ′(x) j � j f(x) j for all x 2 (0, 1). Prove that f = 0 on [0, 1].

3. Let fn(x) =
1

1 + x2n
for x 2 R.

(a) Find where ffng∞

n=1
converges pointwise, and describe the limit function F (x).

(b) Describe the intervals in R on which ffng∞

n=1
converges uniformly to F .

4. Suppose f , g and h are bounded real valued functions on [0, 1] with f � g � h. If f

and h are Riemann integrable with
∫

1

0
f =

∫
1

0
h, prove that g is Riemann integrable.

5. Let F (x, y, z) = (x2 + z2 � 4)2 + xy � 2008. Find all points (x, y, z) such that the

Implicit Function Theorem does not provide a local implicit function f(x, y) = z such

that F (x, y, f(x, y)) = 0. Describe this set geometrically as a subset of R
3 (eg., a

sphere, cone, etc.).

6. Let g : (0, 1) �! R by

g(x) = n when x 2 ((n � 1)2, n2], for each n 2 N.

Since g is increasing and left continuous let µ be the Lebesgue-Stieltjes measure obtained

from g on the semiring of half open intervals:

µ([a, b)) = g(b) � g(a), for all b � a > 0.
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7. Let λ denote Lebesgue measure on the real line.

(a) Prove that there is an open set O that is dense in R with λ(O) < 1.

(b) Let O be any set satisfying the conclusion to part (a). Prove that R � O is

uncountable.

(c) Let O be any set satisfying the conclusion to part (a). Prove that R � O is not

compact.


