ALGEBRA H D QUALIFYING EXAM

September 27, 2008

A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely must include one from each of Sections A, B and C.

Sec/ion A

In this section you may quote without proof basic theorems and classifications from group theory and group actions as long as you state clearly what facts you are using.

Let p and q be distinct primes and let G be a group of order p^3q .

Show that if p - q then a Sylow p-subgroup of G is normal in G.

Assume G has more than one Sylow p-subgroup. Show that if the intersection of any pair of distinct Sylow p-subgroups is the identity, then G has a normal Sylow q-subgroup.

- c Assume the Sylow p-subgroups of G are abelian. Show that G is not a simple group. (Do not quote Burnside's p^aq^b -Theorem.)
- \mathcal{L} Let G be a nite group acting transitively (on the left) on a nonempty set . For 2 let $G_!$ be the usual stabilizer of the point :

$$G_1 = \mathbf{f} q \mathbf{2} G \mathbf{j} q = \mathbf{q}$$

where g denotes the action of the group element g on the point \cdot .

Prove that $hG_1 h^{-1} = G_{h1}$, for every h 2 G.

Assume G is abelian. Let N be the kernel of the transitive action. Prove that $N = G_!$ for every and deduce that jG : Nj = j j.

Let N be a normal subgroup of the group G and for each g 2 G let $_{\mathbf{g}}$ denote conjugation by g acting on N, i.e.,

$$g(x) = gxg^{-1}$$
 for all $x \ge N$.

Prove that g is an automorphism of N for each g 2 G.

Prove that the map $g \in \mathcal{G}$ is a homomorphism from G into $\operatorname{Aut}(N)$, where $\operatorname{Aut}(N)$ is the automorphism group of N.

c Prove that ker = $C_{\mathbf{G}}(N)$ and deduce that $G/C_{\mathbf{G}}(N)$ is isomorphic to a subgroup of Aut(N).

Sec/fon B

Let X be any nonempty set and let R be the (commutative) ring of all integer-valued functions on X under the usual pointwise operations of addition and multiplication of functions:

$$R = \mathbf{f} f \mathbf{j} f : X$$
 ! $\mathbb{Z}g$. For each $a \mathbf{2} X$ de ne $M_{\mathbf{a}} = \mathbf{f} f \mathbf{2} R \mathbf{j} f(a) = \mathbf{0}g$.

Prove that M_a is a prime ideal in R.

Prove that M_a is not a maximal ideal in R.

- c Find all units in R.
- d Find all zero divisors in R.

Let F and K be nite elds with F K. Let F[x] and K[x] denote the respective polynomial rings in the variable x, so F[x] is a subring of K[x].

Prove that if M is any maximal ideal in K[x], then $M \setminus F[x]$ is a maximal ideal in F[x].

Give an explicit example of commutative rings A B and a maximal ideal I of B such that $I \setminus A$ is not a maximal ideal of A.

Let R be a Principal Ideal Domain, let p and q be distinct primes in R, and let a = p q for some $_{\pi}$ 2 \mathbb{Z}^+ . Let M be any R-module annihilated by (a). Prove that

M = M