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  CHAPTER 1: Literature Review 

1.1. Forests in the Northeast 

 In the northeastern United States, forests are an important cultural, economic, 

and ecological resource. They provide recreational opportunities, non-timber forest 

products, and aesthetic beauty. Through direct forest-products manufacturing and forest-

related tourism, they contribute approximately $19 billion annually to the economies of 

Maine, New Hampshire, New York and Vermont (North East State Foresters Association 

2007). In addition to providing wildlife habitat, forests also perform crucial ecological 

services, including water filtration (Stein et al. 2009) and carbon sequestration (Goodale 

et al. 2002, Environmental Protection Agency 2010).  

 Forests in this region, however, also face an array of different stressors. Soil 

acidification associated with air pollution has been observed in the decline of certain 

species and the wider ecosystem (Driscoll et al. 2001). Established exotic insects and 

pathogens such as gypsy moth and beech bark disease, as well as newly invading pests 

such as the hemlock-woolly adelgid, emerald ash borer, and Asian long-horned beetle, 

are projected to have major effects on forested ecosystem processes (Lovett et al. 2006), 

with anticipated increases in frequency and severity of infestations and outbreaks (Allen 

2009, Dukes et al. 2009). Increases in the frequency of severe weather events such as 

wind and ice storms (Dale et al. 2001) are predicted to  lead to the decline of certain tree 

species, whereas changes in temperature and precipitation patterns may expand or limit 

the range of others (Iverson and Prasad 1998). Other studies, however, suggest that recent 
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widely observed forest declines are attributable to natural population senescence, as the 

majority of trees in the Northeast regenerated at roughly the same time (Wargo and 

Auclair 2000). 

Given the presence of these different stressors, and concerns that forest mortality 

may be on the rise (Vermont Department of Forests 2010), monitoring is an important 

step in forest protection. Common forest monitoring methods include field-based studies 

and aerial surveys, but these are often limited by restricted scalability to the broader 

landscape and lack of temporal continuity (Zhang et al. 2011). Other potential methods of 

monitoring forests include dendrochronology studies and remote sensing.  

1.2. Dendrochronology 

 

Dendrochronology, the study of annual growth rings produced in trees, can be 

used to record environmental processes and monitor changes over time (Speer 2010). In 
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can be used to help monitor and quantify forest health by identifying the timing of 

specific disturbance events as well as more general tree stress levels given the 

relationship between  prolonged reductions in radial growth and increased mortality risk 

(Wyckoff and Clark 2002). 

Discrete disturbance events can be identified and placed in a larger context 

through the study of tree-ring patterns. In their research on pandora moth (Coloradia 

pandora) in Oregon, Speer et al. (2001) successfully developed an outbreak “signal,” 

using knowledge of recent moth outbreaks, that was characterized by a precipitous 

reduction in ring-width that persisted for multiple years. With this outbreak signal, they 

identified similar occurrences over a 600+ year time span in 14 old-growth stands. The 

length and geographic scale of these tree-ring chronologies put recent pandora moth 

outbreaks in greater context and highlighted the potential role of historical processes and 

climate variation on the moth’s population dynamics. Similar research identifying past 

pine beetle (Kulakowski et al. 2003), forest tent caterpillar (Sutton and Tardis 2007), and 

ciacada (Speer et al. 2010) outbreaks have been used to recreate the timing and relative 

severity of outbreaks.  

Dendrochronology can also be used to identify specific occurrences of fire and 

drought. Swetnam and Baisan (1996), and Niklasson and Granström (2000) used burn 

scars present in tree-ring chronologies to reconstruct past fire history in the Southwestern 

United States and boreal Sweden respectively. Both of these studies revealed that the lack 

of fire in the region in the 20
th

 century has been fairly anomalous and coincided strongly 
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modern  precipitation and temperature measurements, and subsequently used this 

relationship to reconstruct nearly 800 years of drought occurrence history across North 

America.  This long-term reconstruction illustrates the ability of tree-rings to track the 

spatial and temporal location of both short-term drought events (e.g., <5-10 year) as well 



 

5 

finding is particularly helpful to forest ecologists when studying areas where there is little 

recorded information about past disturbance history—a common occurrence for most 

forested regions. 

In the Northeast, dendrochronology has been particularly used in the study of 

decline associated with acid deposition and winter injury. Local observations of red 

spruce (Picea rubens) decline since the 1960s and 1970s (Siccama et al. 1982) were 

shown to be quite widespread based on reductions in basal area increment measurements 

observed in 3,000+ trees cored in Vermont, New Hampshire, Maine, and the Adirondacks 

of New York in the 1960s-mid1980s relative to the previous 50 years (Hornbeck and 

Smith 1985). Research by Cook et al. (1987)  using red spruce tree-ring widths and 

reconstructed climate records from these chronologies, suggested that these observed 

trends in growth reduction were not attributable to climate alone, implicating an external 

factor (i.e., air pollution and acid deposition). However, using these same climate 

reconstructions they also identified unusually cold winters as an inciting factor in red 

spruce decline. Similarly, work by Schaberg et al. (2011) examining the effects of a 2003 

winter injury event found red spruce foliar dieback was significantly related to reductions 

in radial growth for multiple years. Notably, this work also identified trees with little 

evidence of foliar damage after the 2003 event that nevertheless had up to 31% reduction 

in radial growth. This hints at the complexity of environmental factors that influence 

growth and illustrates the cumulative effects of an entire growing season (and previous 

growing seasons) on final tree-ring width. 
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 Halman et al. (2011) also examined the effects of a widespread winter injury 

event in the Northeast—the 1998 ice storm—on the crown vigor and radial growth of 

twelve paper birch sites. By measuring calcium depletion in soils at these sites, which has 

been shown to be linked to acid deposition from air pollution, they found there was a 

significant association between higher calcium concentrations and stronger recovery of 

both foliage and basal area increment following damage from that storm. Combining 

dendrochronology techniques with visual crown assessments and soil chemistry data 

provided a more nuanced and robust picture of paper birch health. Another study that 

examined forest response to the 1998 ice storm was Smith and Shortle’s (2003) work 

measuring crown loss and radial growth of  347 hardwoods in New Hampshire and 

Maine. They found that while severe crown loss (>50%) led to significant immediate 

reductions in radial growth, most individuals showed signs of full recovery in tree-ring 

width by 2000. For some species (i.e., white ash (Fraxinus americana)), crown 

replacement occurred so quickly that the amount of crown loss in 1998 appeared to have 

no significant effect on measurements of radial growth 1998-2000. These studies 

illustrate how dendrochronology can be used to evaluate resiliency and recovery from 

disturbance, which is important both in the study of forest health as well as from a 

commercial timber management perspective.  

Tree-rings have annual resolution and can provide decades, if not centuries of 

information about the status of an individual tree or stand, making dendrochronology 

very well-suited to monitoring forest condition changes over long periods of time (Biondi 

1999). Although dendrochronology can provide a wealth of information about the long-
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term health, resilience, recovery and/or decline of various forest ecosystems, collecting 

and processing cores can be a lengthy and tedious process that requires specialized 

equipment and training. Due to these processing requirements, dendrochronological 

studies are often limited in their geographic extent. Given these spatial limitations, 

dendrochronology can be paired with other tools to analyze forest health and productivity 

at a broader scale.  

1.3. Remote Sensing of Forest Health and Productivity 

 In contrast to the highly detailed, yet localized information provided by tree-

rings, remote sensing is a technique that can be used to monitor forests at the wider 

landscape scale and in areas where field work is not feasible. Remote sensing can be 

generally defined as “...the science of acquiring information about the Earth’s surface 

without being in contact with it. This is done by sensing and recording reflected or 

emitted energy and processing, analyzing, and applying that information,”(Canada 

Centre for Remote Sensing 2007). The energy source most commonly utilized by aerial 

and space-borne remote sensing devices is the electromagnetic radiation emitted by the 

sun. This radiation, which has discrete contiguous wavelengths, travels from the sun and 

then interacts with the earth’s atmosphere and surface features where it is scattered, 

transmitted, absorbed or reflected back to the sensor.  Different features will interact with 

the different wavelengths in a unique manner depending on their physical properties and 

condition. For example plants reflect very little in the blue and red portion of the 

electromagnetic spectrum due to the presence of chlorophylla and chlorophyllb, which 

highly absorb wavelengths in in the blue and red range to power photosynthesis. In 
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contrast, blue light cannot penetrate water as effectively as longer wavelengths and is 

more highly reflected—hence the reason many bodies of water appear bluish to the 

human eye. Using knowledge of how various features interact with the electromagnetic 

spectrum, it is possible to classify and evaluate these features within larger images 

captured by the sensor. It is also possible to mathematically combine measurements of 

different wavelengths into ratios or other formulas to capture multiple pieces of 

information about a feature at once, while offsetting potential error associated with 

atmospheric attenuation and topography. 

  While there are a variety of sensors whose imagery can be used in remote 

sensing studies of forest health, imagery from the Landsat program is particularly well 

suited for this objective (Cohen and Goward 2004). The Landsat program has collected 

imagery nearly continuously since 1972 when the first sensor placed on a satellite 

platform for the purposes of studying and monitoring the earth’s surface was launched by 

NASA. The scene size (183km swath) and temporal resolution (16 days) of images 

captured by Landsat program permit broad geographic and more detailed temporal 

coverage.  Since 1982, with the launch of Landsat 4 Thematic Mapper (TM), spatial 

resolution has risen to moderate (30m) and the spectral resolution of imagery has 

expanded to 7 bands (3 visible, 1 near-infrared, 2 mid-infrared, and 1 thermal). Another 

major advantage to the use of Landsat data is that as of 2008, imagery is provided free-

of-cost and is easily accessible.  

 Landsat imagery has been used to study and classify forest damage for a variety 

of tree types and stress events.  Rock et al. (1986) found they could identify the relative 
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degree of damage (high v. low) to red spruce-balsam fir stands in northern Vermont with 

high accuracy (r
2 

= 0.94-0.95) using a moisture stress index derived from Landsat 5 TM 

data. However, it remained ambiguous exactly what biophysical mechanism (e.g., water 

stress, cell structure, leaf biomass) was driving the observed differences in the imagery. 

Landsat 5 TM imagery has also been used to identify areas experiencing the initial stage 

of mortality (reddening of needles) associated with mountain pine beetle attack in British 

Columbia (Franklin et al. 2003). For the single year considered (1999), using a 

supervised classification with 360 ground truth points, Franklin et al. successfully 

distinguished attacked from non-attacked areas with 73% accuracy. Similarly, Nakane 

and Kimura (1992) utilized Landsat 5 TM imagery to map Japanese red pine (Pinus 

densiflora) blight. Using their model, they were able to correctly classify field sites to one 

of five damage classes 62% of the time, and to the correct or an adjacent damage class 

96% of the time.  

 In addition to classifying and quantifying damaged areas from a single year, it is 

also possible to track changes in forests over time using Landsat imagery from different 

months or years. This is particularly useful when attempting to map damage extent, as it 

is possible to compare imagery pre-event to post-event imagery. In the Northeast, this 

type of analysis has been carried out by many researchers studying discrete disturbance 

events. In one of the earlier applications of Landsat TM technology for change forest 

detection, Vogelmann and Rock (1989) used imagery from 1984 and 1988 to identify 

deciduous forested areas affected by an outbreak of pear thrips (Taeniothrips 

inconsequens) in southern Vermont and western Massachusetts. Using ground-based 
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that monitor forest condition over longer time scales than a few years. One example is the 

work done by Cohen et al. (2002) who used change detection on 11 years of Landsat 

images over a 23-year period (1972-1995) to identify areas associated with fire and 

harvesting activity in western Oregon. Given the relatively severe impact of fire and 

harvesting events on vegetation’s spectral response, they were able to distinguish 

disturbed areas from non-disturbed areas with high (87.8%) accuracy. By combining 

these Landsat-based maps of forest disturbance with additional data, they tracked rates of 

disturbance over time as well as by land ownership patterns. Vogelmann et al. (2009) also 

studied forest condition over a long time period (1988-2006), but in this case were 

attempting to see more gradual changes in forest health, rather than abrupt disturbance 

from discrete events (e.g., fire or timber harvest). Using eight Landsat TM images over 

an 18-year period, they were able to track changes in reflectance over time and found 

significant declining forest condition trends in their study area in New Mexico. While no 

quantitative ground-truthing was carried out, inspection of the modeled declining areas 
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of the best fit linear trend line of those condition values plotted over time. Analysis of the 

resulting forest health trend model suggested that at the landscape scale, while there have 

been fluctuations in forest condition from year to year, overall there is no trend towards 

improvement or decline. At smaller scales, however, they found that there were localized 

patches of declining forest, much of which seemed to be associated with higher 

elevations and balsam fir- paper birch- red spruce communities (Olson 2011). However 

this model, like the one created by Vogelmann et al. (2009), has not be explicitly ground-

truthed, making it difficult to gain a full picture of what ecological processes the Landsat 

imagery is recording.  

 Remote sensing studies designed to monitor forest condition over multiple years 

can be difficult to ground-truth, however, this is an important step given the complexity 

of processing remotely sensed images and the discrepancies between lab-findings and 

applications in the field (Hunt and Rock 1989, Pierce et al. 1990, Huete et al. 1994, 

Cunningham et al. 2009). There are few publically available, spatially explicit, long-term 

datasets that measure tree canopy condition, which is what the Landsat sensor is 

“seeing,” over time. The 
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High Resolution Radiometer imagery (AVHRR). They compared tree-rings from a single 

site in Alaska dominated by birch and spruce to those NPP models 1982-1990, finding 

moderate positive correlations when comparing raw ring widths (r = 0.366-0.419) and 

strong correlations after detrending the tree-ring data (r =0.791-0.812). While this 

comparison was only carried out at one site (as a component of a larger study on 

productivity), the authors did highlight characteristics of tree-ring data they speculated 

would be most successfully correlated with NDVI. They suggest analyzed cores should 

be representative of the growth patterns, species composition, and age class distribution 

of all trees in the pixel of imagery the samples were collected in.  

 Using one of these same NPP models derived from NDVI over the same time 

period (1982-1990), D’Arrigo et al. (2000) came to similar conclusions when comparing 

maximum latewood density  and tree-ring width to NPP at four sites in Alaska and 

Siberia. Correlation between NPP and a tree-ring width index was moderate to strong for 

all sites (r = 0.59-0.83), however, in this case detrending the tree-ring data actually lead to 

poorer correlation ( r = -0.16- -0.19). Another interesting finding from this study was that 

the relationship between tree-ring metrics and NPP derived from NDVI was significant 

and strong in areas where the percent cover of the species cored was relatively rare (10%-

63%). Based on their findings, the authors speculate that strongest relationship between 

tree-ring increment and NDVI will be observed in areas with a similar limiting growth 

factor for all species (e.g., temperature or water). This is because poor or strong growth 

of the species of interest will be mirrored by other (i.e., non-
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 In 2004, the Global Land Cover Facility of the University of Maryland 

developed a multi-year bi-monthly model of NDVI 1981-2006, based on AVHRR 

imagery, with worldwide coverage known as the GIMMS (Gobal Inventory Modeling 

and Mapping Studies) NDVI dataset. With the creation of this dataset, it was possible to 

easily compare NDVI to tree-ring metrics without significant digital image processing 

requirements. This facilitated several more studies comparing NDVI to tree
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potential for shrubs to contribute to the NDVI signal, but also suggests that the variability 

of NDVI may make interannaul comparisons difficult, depending on imagery timing. 

 One of the few studies that has used imagery with moderate spatial resolution to 

derive NDVI estimates is the work carried out by Babst et al. (2010) on mountain birch in 

Sweden. In this complex study on the effects of autumnal moth (Epirrita autumnata) on 

tree-ring increment, they used three Landsat images (5TM and 7 EMT+) of three 

outbreak years and one Indian Remote Sensing Satellite (IRS) image in a year with no 

insect damage as a control. Comparing changes in NDVI between outbreak and normal 

years and changes in ring widths in outbreak and normal years for seven sites they 

developed a third degree polynomial regression model with an r
2
 of 0.64. The imagery 

used in this study was high enough resolution (23m-30m) to capture disturbances that 

happen at smaller or patchier spatial scales, such as the defoliation caused by this moth 

outbreak. It is interesting to note they found the change in NDVI was linear to leaf area 

lost, but the radial reducti
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and Goward 2004). Recently Pontius et al. (in prep.) processed 27 years of Landsat 

imagery that covers eastern New York, Vermont, New Hampshire, and Maine. Using this 

imagery they were able to track changes in forest health using a newly developed 

vegetation index that is a combination of multiple hyperspectral indices adapted for 

multispectral imagery. This model as well as the suite of 49 additional vegetation indices 

derived from the same imagery 1984-2010, have yet to be ground-truthed to any metric 

of forest condition on the ground—a crucial step in assessing the limitations of a model. 

 Taking advantage of the relationship between environmental conditions/stress 

and radial tree growth, tree-rings have been used in a wide range of forest health studies 

throughout this region and the world. As tree-rings can provide long-term, nearly annual 

data they are a good source of information about past forest condition. This thesis 

research compares tree-ring data from 47 sites in Vermont and New Hampshire to 

vegetation indices derived from Landsat imagery to evaluate how well the latter 

corresponds to ground conditions of growth. Although previous authors have examined 

the relationship between radial growth and a single vegetation index (NDVI) with overall 

good (though varying) success, the majority of that research has been carried out in 

boreal forests with remotely sensed imagery that has much coarser spatial resolution than 

Landsat (Malmström et al. 1997, D’Arrigo et al. 2000, Kaufmann et al. 2004, Kaufmann 

et al. 2008, Forbes et al. 2009, Lloyd et al. 2010, Berner et al. 2011). Results of this 

research should provide more information about how well Landsat imagery can be used 

to monitor forest condition and productivity in temperate, Northeastern forests.  
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CHAPTER 2: Remote sensing of forest productivity in Northeastern forests 

2.1. Introduction 

 

Forests provide a range of goods and services including wood production and 

carbon sequestration. The ability of trees to perform these functions is dependent on 
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with atmospheric interference and differences in illumination. The normalized difference 

vegetation index (NDVI), a combination of the red and near infrared portions of the 

electromagnetic spectrum, is one of the most commonly utilized vegetation indices and 

has been applied in the study of forest land use change, carbon storage, and biomass 

estimation (Maselli 2004, Myeong et al. 2006, Meng et al. 2009). There are many other 

vegetation indices 
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averaged, and then all trees at each site were averaged. In cases where multiple species 

had been sampled at a site, we used species basal area (calculated using DBH field 

measurements of all trees > 12.5 cm diameter in a 17m radius plot) to calculate a 

weighted average BAI. 

2.2.3. Remote Sensing 

 

 In order to compare field measured BAI at each plot, to spectral reflectance 

metrics, imagery from the Landsat 5 Thematic Mapper (TM) sensor was obtained from 

the US Geological Service Global Visualization Viewer (http://glovis.usgs.gov/). For 

each of the 27 years imagery is available (1984 – 2010) we downloaded one growing-

season (i.e., June 10-August 20) image for two Landsat scenes covering our study area: 

Row 29-path 13 (Vermont/ New Hampshire) and row 29-path 14 (eastern New 

York/Vermont) (Table 2). A single growing-season image was deemed sufficient to 

capture the spectr

http://glovis.usgs.gov/
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several additional processing steps were required to normalize reflectance across the 

imagery time series. We first converted raw digital number (DN) values to top of 

atmosphere reflectance to account for differences in illumination intensity and sun angle 

among acquisition dates using ENVI 4.8 (Exelis 2011, Colorado Springs, CO). 

Calculation of many of the vegetation indices explored in this study required an 

additional conversion to at-surface reflectance. We chose a histogram-based dark object 

subtract for each band.  This dark object subtract approach has been shown to be  as 

effective at reducing the differences in surface reflectance estimation between multi-date 

images as more complex radiative transfer models for multi-spectral imagery (Song et al. 

2001). To ensure accurate co-registration of pixels across years, we georegistered each 

image to a common mid-study cloud-free image using a 3
rd

 order polynomial with a 

nearest-neighbor resampling technique (root-mean square error < 0.2 pixels or 6m 

average accuracy). Considering the 17m radius field plots and 30 m spatial resolution of 

the Landsat sensor this level of accuracy is necessary to ensure correct spectra extraction 

for each field plot.   

Surface reflectance was extracted for bands 1-5, and 7 using the Spatial Analyst 

tools in Arc 10 (ESRI 2011, Redlands, CA) from the closest pixel to the GPS coordinates 

of plot center. Cloud cover, haze, and cloud shadow can “pollute” reflectance values as 

they mask and alter spectral data. To ensure that only cloud free data was included in our 

analysis we visually inspected each site across all images. Extracted values were 

manually converted to “NoData” for that year if the site was covered by cloud, cloud 

shadow or visible haze in any given image. Given that the two Landsat scenes included in 
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this study overlap for ~65 km across New Hampshire and Vermont (Figure 2), there were 

many study sites with two sets of spectral data available in each year. Where available, 

these spectral values were averaged to come up with one set of spectral data per year.  

While Landsat band locations were developed with vegetation applications in 

mind, there is a wealth of vegetation indices that can improve upon the ability of the 

sensor to detect specific canopy biophysical parameters (Table 3). This includes many 

broad-band indices, designed specifically using multi-spectral sensors like Landsat, but 

also extends to a suite of narrow-band indices designed specifically for hyperspectral 

applications, that to our knowledge have not been tested using broad-band sensors.   

In order to conduct a comprehensive assessment of Landsat’s ability to quantify 

forest growth and productivity, we created a spectral database to calculate a suite of 

vegetation indices with documented relationships to canopy characteristics. For narrow-

band indices, we calculated a Landsat equivalent where each distinct narrow-band 

wavelength required for calculation fell within a distinct Landsat band.  For example, the 

chlorophyll sensitive index proposed by Datt (1998) calls for a ratio between reflectance 

at 672 nm and R550 nm. We calculated a broad band equivalent as Landsat 5 TM 

Band3:Band2.  While the expectation is that much of the specific information pertinent to 

chlorophyllb content captured in the narrow-band equation will be lost in the broad-band 

equivalent due to the narrow chlorophyllb absorption feature, there may still be enough 

information relative to vegetation condition to make it useful in a more complex model.  

The resulting database calculated 55 pre-existing vegetation indices/raw bands (Table 3) 

including common multi-spectral indices such as the normalized difference vegetation 
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index (NDVI), and more complex narrow-band indices like the structure insensitive 

pigment index (SIPI). 

2.2.4. Statistical Analysis 

As a preliminary data exploration step, annual BAI measurements were 

compared to annual vegetation indices across all sites and all years 1984-2010 (n =701) 

using Spearman’s rho correlation. While statistically complicated by temporal 

autocorrelation, and artificially inflated sample size, this analysis was not intended to 

identify significant relationships, but instead to identify which of the 55 vegetation 

indices were likely to have a significant relationship with BAI in subsequent analyses. 

This was of considerable interest based on our goal to develop a global, or “landscape 

scale,” model to quantify forest growth.  Such a model would have to maintain 

relationships across sites of varying species composition and years of varying growth 

conditions.  To explore the strength of fit when analysis was limited to a single species, 

this test was rerun on 5 species “types”(“Red Spruce,” “Birch,” “Pine,” Mixed 

Hardwoods,” and “Mixed Balsam Fir/Red Spruce/ Birch”) that were created by 

combining data from sites with similar species composition. 

 To measure the relationship between BAI and vegetation indices while 

accounting for inherent differences in tree-ring series (as a result of different species 

composition, landscape characteristics, external disturbance etc.) and autocorrelation 

across years (Berner et al. 2011), we conducted a Spearman’s rho correlation across all 

available imagery years on a site by site basis.  Correlation analysis assumes 

independence among observations—a condition likely to be unmet by tree-ring data 
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given the effect one year’s growth may have on subsequent years. To address the 

statistical violation of carrying out correlations on datasets with potential temporal 

autocorrelation across years, the effective sample size was reduced by penalizing the 

sample size in proportion to the degree of first order autocorrelation between one year’s 

BAI and the following year’s BAI (Dawdy and Matalas 1964 adapted by Berner et al. 

2011; Appendix A) in R (version 2.15.1). In cases where there was no significant (p < 

0.05) autocorrelation, the full sample size was preserved. This site-specific analysis also 

highlights which types of stands have the strongest or weakest relationships between BAI 

and vegetation indices, or if different indices are required to quantify growth in different 

forest types.  Due to cloud cover present in the imagery, not all years were available at all 

sites, further limiting the sample size.  

Because woody growth is potentially related to many different canopy metrics 

(leaf area index, chlorophyll content, leaf moisture content, etc.) it is possible that no 

single spectral index can be used to quantify forest growth alone. To test this theory, we 

developed a multi-vegetation index model to predict forest growth across the region (i.e., 

with data from all sites and all years) using stepwise linear regression. With BAI as the 

dependent variable, the mixed platform tests all possible linear regressions combinations, 

retaining vegetation indices that strengthen the model fit.  To avoid over-fitting, model 

development was limited to a maximum of 5 terms (Williams and Norris 2001), α < 0.05 

for all terms and a variance inflation factor < 10 (Kleinbaum et al. 1998).  Jackknifed 

residuals calculated from the PRESS statistic were also used to assess the stability of the 

final predictive equation (Kozak and Kozak 2003). Based on preliminary results, an 
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chlorophyll (NPCI, SIPI, SRPI, MSR705, MND705) (Peñuelas et al. 1993, Peñuelas et al. 

1995, Sims and Gamon 2002). Chlorophyll levels are related to a plant’s ability to 

produce carbohydrates and by extension the xylem tissue that forms tree-rings. 

Chlorophyll fluorescence can be used as an early indicator of leaf stress as it is one of the 
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tree-ring width index of willows at 27 sites in northern Russia.  There are many 

experimental and ecological explanations for the observed relatively low correlation 

coefficients, many of which are discussed in section 2.3.4. While these overall 

associations are relatively weaker, our results show that other vegetation indices 

outperformed the commonly used NDVI, suggesting that future studies using remote 

sensing techniques to quantify forest growth should consider expanding the range of 

indices utilized. 

At this “global” scale, plotting out BAI against each significantly correlated 

vegetation index and color coding data points 
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(average  = 0.609 ± 0.078). Among these sites with a significant relationship between 

BAI and MIR, there we
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one would expect) with BAI measurements at 7 sites (mean  = 0.481 ± .074, mean p = 

0.063 ± 0.023). However, there were two sites that had a significant negative relationship 

(which one would not expect) between BAI and NDII7 as well (mean  = -0.479 ± .014, 

mean p = .0893 ± 0.013).  NDII7 is a combination of the near infrared (band 4) and mid 

infrared (band 7) bands (Table 3) (Hunt and Rock 1989) and was developed to evaluate 

water content by utilizing the high water absorbance of band 7 (e.g., lower reflectance 

signals higher water content) and the cell structure information provided by band 4 (e.g., 

higher reflectance signals healthy intercellular air spaces). 

It is interesting that the two vegetation indices (MIR, NDII7) that had a 

significant relationship to BAI measurements at the most sites are both associated with 

water levels in vegetation. This could be due to a range of different reasons including the 

direct association of water stress with reduced radial tree growth (Stahle et al. 2007, Klos 

et al. 2009) as well as water stress potentially serving as an indicator of the presence of 

other stressors such as insect and pathogen damage (Townsend et al. 2012). Being farther 

along the electromagnetic spectrum, the bands that compose these indices (band 4, 5, and 

7) 



 

38 

using near-infrared and mid-infrared bands (e.g., NDII7) to monitor actual water levels 

for a variety of species only worked for very severe cases of water stress. The only field-

based study we were able to identify used a simulated Landsat TM sensor mounted on a 

plane (Pierce et al. 1990) and found the strength of the relationship between the 

normalized difference infrared index using band 5 in place of band 7 (e.g., NDII5) and 

field measurements of water pressure varied based on the time of day. The sensor was 

able to see significant differences between healthy and severely girdled trees in the 

morning, but in afternoon imagery, no significant difference was visible between stands 

due to transpiration. Landsat imagery is collected at around the same time of day—

approximately solar noon—a point in the day when the differences between normal and 

water-stressed trees was not still distinguishable in the Pierce et al. (1990) study. 

Within-site analysis of the relationship between BAI and vegetation indices 

should hold constant factors such as species composition, topography, and soil properties 

that likely contribute variation in that relationship at a broader landscape scale. The fact 

that relatively few (21% using α = 0.05; 36% using α = 0.10) of these sites had a 

significant relationship between BAI and any of the 55 vegetation indices, and that no 

one index was significantly correlated with BAI at more than 7 sites suggests that 



http://www.danielsoper.com/statcalc3/calc.aspx?id=9
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mm
2 

compared to a mean BAI of 1013.57 mm
2
) 
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measure canopy moisture content, leaf stress, vegetation biomass, and an integrated 

measure of “forest decline,” respectively.  

 Potential reasons for relatively better modeling success for paper birch include a 

larger sample size: 12 sites fell into this species type and on average these sites had 19 (± 

2.79) years of imagery data available, due in part to all sites falling in both Landsat row 

29 / path 14 and row 29/ path 13. The dendrochronological sampling used to collect the 

tree-ring data was also specifically designed to capture a range of canopy conditions and 

elevation types, and included many declining trees that were in poor enough condition to 

have locally absent rings (Halman et al. 2011).  By including a broader range of potential 

growth conditions, relationships between vegetation indices and BAI are more robust. 

Another potential explanation for the stronger predictive ability of this model compared 

to the model including all species, is that  paper birch do not retain their photosynthetic 

material from one year to the next, thus reducing complications from a lagged radial 

growth response related to damaged needles retained from previous years. Lastly, these 

sites were also relatively close to one another (<50km apart), which means that they may 

be more likely to share characteristics not accounted for in the modeling process, that 

nevertheless likely affect BAI including precipitation patterns, storm and winter injury 

damage, and  some soil properties. 

 The other species type with a large sample size available on which to base a 

predictive BAI model was red spruce (with 22 sites). Unlike the model developed for 

paper birch, however, this model (Figure 7b) performed more poorly than the global 

model (p = <0.0001, r
2 

= 0.116, adjusted r
2 

= 0.107, RMSE = 548.79 with mean BAI = 
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1048.65). The stepwise model fitting process retained the following vegetation indices 

for the final predictive equation for red spruce
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together spectrally in the imagery. With a longer and wetter growing season, forests in 

the Northeast also tend to experience catastrophic disturbance with less frequency than 

other forested ecosystems (Seymour et al. 2002). Less dramatic loss of canopy from 

disturbance events and 
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pick up that loss of biomass. The remaining trees at that site cored in 2010, however, 

would not have had any sign of reduced growth post- harvesting activity in their tree-ring 

records, and in fact may have experienced release. This difference between Landsat 

measurement of forest condition and the record contained in the tree-rings of individuals 

cored could lead to muddying of their relationship. In this particular example, this site 

was removed from this analysis to reduce that potential source of error. However, the 

history of many sites included in analysis remains unknown.  

 While there are many potential sources of error specific to this study, there is 

also some evidence that the relationship between canopy condition (which is what the 

Landsat imagery directly captures) and radial growth is somewhat complicated and non-

linear. In a lengthy literature review on forest decline and basal area increment in Europe, 

Innes (1993) concluded that trees had to lose between 30% and 50% of their foliage 

before growth reductions were apparent in the tree-rings. There are similar examples of 

this in the Northeast where Schaberg et al. (2011) found examples of red spruce trees 

with 100% canopy loss that resulted in only a 60% reduction in radial growth for that 

year.  Work  by Smith and Shortle (2003) on hardwoods after the 1998 ice storm also 

revealed that for certain species (i.e., white ash), the degree of damage experienced 

t
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as well as variability in the  proportion of primary productivity (viewable by the Landsat 

sensor) that is ultimately allocated to radial trunk growth (tree-rings). 

 

2.4. Conclusions 

 

 Statistically significant, although weak, relationships between BAI and some 

vegetation indices were observed. The most consistently significant indices across the 

three analyses (defined as either the strongest, or showing up in multiple analyses) 

include: NDII7, MIR, SARVI, OSAVI, Flo, SRPI, and VogB .  These are designed to 

measure water stress, “greenness” (a combination of biomass, leaf area index, vegetation 

cover) adjusted for atmospheric and soil interference, and chlorophyll and carotenoid 

content. While NDVI is a very widely used vegetation index, in our analyses, it appears 

to have underperformed many other multispectral and hyperspectral indices. The strength 

of associations and model fit were also improved by focusing on single species types 

instead of attempting to carry out analyses on all sites, regardless of species composition. 

  These findings suggest that while remotely sensed products have been shown to 

be usable in identifying disturbance events (Rock et al. 1986, Vogelmann and Rock 1989, 

Cohen et al. 2002, Olthof et al. 2004, Townsend et al. 2012), factors such as the timing 

and availability of imagery, mixed pixel issues common to heterogeneous forests such as 

those in the Northeast, mortality and  regeneration captured in pixels and not in cores, 

among other factors, may make it difficult to use this imagery to accurately model radial 

growth. If efforts were undertaken to model forest productivity (in terms of BAI) from 
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indices beyond NDVI alone and developing species-specific equations as opposed to 

applying a single equation across an entire image. Any results should also be interpreted 

with care, understanding that accuracy may only be within 20-25% (proportion of 

RMSE/mean) of true BAI at best. While limited in absolute accuracy, in this study using 

a suite of vegetation indices derived from Landsat imagery to predict BAI was an 

improvement over NDVI alone and could potentially be used as a general relative 

measure of landscape scale productivity from year to year. 
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Figure 1: A conceptual model of the hypothesized relationship between Landsat 

imagery and radial-growth (tree-rings) 
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Figure 2: Map of the study region with Landsat 5 TM scene boundaries and site locations 
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Figure 3: An example of the “global” (all years and all sites) relationship between BAI 

and vegetation index measurements, in this case the structure insensitive pigment index 

(SIPI)(Peñuelas et al. 1995). Data points are color coded by species. Note the obvious 

clustering of similar species types.  

 

 = -0.155 
p < 0.0001 
n = 746 

     Red Spruce 

     Paper Birch 

     Pine 

     Mixed Hardwoods 

     Mixed Fir-Spruce-Birch                
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Figure 4: BAI vs. NDVI and MIR for two sites:  CAM070 (with a significant relationship 

to MIR) and 
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Figure 5: The four-term model that predicts BAI (mm
2
) with r

2  
= 0.120, RMSE = 645.71 

using the following equation developed with data points from all species types and all 

years: 12148.476 - 61358.22* (B3 ) + 1714.863*(BNa) -11198.23*(MSR705) - 541.938*(SRPI). 

 

  

 

p =  <0.0001 
r2 =  0.120; adjusted r2 = 0.115 
RMSE= 645.71 
Press RMSE =648.38 
# sites = 47 
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Figure 6: Average residual values from the global model predicting BAI from 
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Figure 7: Actual vs. predictive BAI models developed using stepwise model fitting for 

the following species types: a) Paper Birch, b) Red Spruce c) Pine d) Mixed Fir-Spruce-

Birch e) Mixed Hardwoods.  

 

 

d) Mixed Fir-

Spruce-Birch 

e) Mixed 

Hardwoods 

p =  <0.0001 
r2 =  0.311; adjusted r2 = 0.301 
RMSE=131.571 
Press RMSE = 133.64655 
# sites =  4 
 
Equation: 
BAI (mm2) = 

 -213.725 + (SAVI*1818.632) 

p =  0.0194 
r2 = 0.094; adjusted r2 = 0.077 
RMSE= 332.64 
Press RMSE = 339.81 
# sites = 5 
 
Equation:  
BAI (mm2) = 
1016.202 - (SARVI*104.291) 
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