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A new approach for forest decline assessments: maximizing detail and
accuracy with multispectral imagery
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Remote sensing of forest condition is typically based on broadband vegetation indices
to quantify coarse categories of canopy condition. More detailed and accurate assess-
ments have been demonstrated using narrowband sensors, although with more limited
image availability. While differences in sensor capabilities are obvious, I hypothesized
that multispectral imagery may be able to detect more subtle canopy stress symptoms if
a new calibration approach was considered. This involves three major changes to
traditional decline assessments: (1) calibration with more detailed field measurements,
(2) consideration of narrowband derived indices adapted for broadband calculation,
and (3) a multivariate calibration model. Testing this approach on Landsat-5 (TM)
imagery in the Catskills, NY, USA, a five-term linear regression model (r2 = 0.621,
RMSE 0.403) based on a unique combination of vegetation indices sensitive to canopy
chlorophyll, carotenoids, green leaf area, and water content was able to quantify a
broad range of forest condition across species. When rounded to a class-based system
for comparison to more traditional methods, this equation predicted decline across 42
mixed-species plots with 65% accuracy (10-classes), and 100% accuracy (5-classes).
This approach was a significant improvement over commonly used vegetation indices
such as NDVI (r2 = 0.351, RMSE = 0.500, 10-class accuracy = 60%, and 5-class
accuracy = 74%). These results suggest that relying solely on a single common
vegetation index to assess forest condition may artificially limit the accuracy and
detail possible with multispectral imagery. I recommend that future efforts to monitor
forest decline consider this three-pronged approach to decline predictions in order to
maximize the information and accuracy obtainable with broadband sensors so widely
available at this time.

1. Introduction

Multispectral remote-sensing sensors such as Landsat have been used for decades to
assess a suite of vegetation biophysical parameters. These studies often employ vegeta-
tion indices (VIs) based on the unique reflectance characteristics of vegetation across the
visible and near infrared wavelengths. The most common include the ratio vegetation
index (RVI) (Pearson and Miller 1972) and NDVI (Rouse et al. 1974). Noting the
sensitivity of common indices to changes in background properties, another class of
indices was designed to account for soil and atmospheric background variations (e.g.
soil adjusted vegetation index (SAVI) – (Keane, Morgan, and Menakis 1994) trans-
formed SAVI (TSAVI) (Arzani and King 1997)). In forest health applications, these
indices are typically used to identify broad categories of forest condition (primarily
characterized as defoliation classes) for a single species of interest. For example,
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Lambert et al. (1995) used Landsat imagery to separate three categories of damage in
Norway spruce with 75% accuracy; Royle and Lathrop (2002) predicted four classes of
hemlock defoliation with 82% accuracy; Wang, Lu, and Haithcoat (2007) quantified five
categories of oak decline in response to the drought of 1999 with 76% accuracy; and
Arsenault et al. (2006) separated aspen into light, moderate, and severe damage with
70% accuracy.

While this approach may be useful for assessing extreme changes in specific forest
canopies, limiting decline predictions to a small number of coarse classes lacks the detail
necessary to detect early, more subtle decline symptoms or monitor long-term trends over
time. Addressing this limitation to categorical assessments of forest condition, Townsend
et al. (2012) used Landsat to map continuous canopy defoliation, quantified as a change in
common vegetation indices, between gypsy moth defoliation and non-defoliation years.
Their final model was able to estimate defoliation, with RMSE = 14.9% and cross-
validation r2 = 0.805. While this represents an improvement over typical broad categorical
assessments of forest condition, it still focuses on acute, severe stress events in relatively
homogeneous deciduous stands.

In contrast to multispectral efforts, narrowband hyperspectral sensors have been used
to quantify a range of forest biophysical, structural, and process-based (e.g. productivity)
characteristics. The accuracy of these efforts can be attributed to both the narrow spectral
signal of key biophysical absorbance features that can be detected with narrowband
sensors and the analytical calculations possible with many contiguous bands. The devel-
opment of narrowband indices is typically based on laboratory samples where wave-
lengths of known sensitivity to the target biophysical parameter (such as chlorophyll
content, chlorophyll fluorescence, or leaf water content) are linked to a parameter
‘insensitive’ control band. This has resulted in the development of indices to quantify
chlorophyll concentration (Gitelson and Merzlyak 1996), photosynthetic activity (Carter
1998; Carter, Cibula, and Miller 1996), and micronutrient content (Adams et al. 2000) to
name a few. Hyperspectral sensors have also been used to quantify forest decline. Pontius,
Hallett, and Martin (2005a) used NASA’s AVIRIS sensor to predict hemlock woolly
adelgid (Adelges tsugae)-induced decline in eastern hemlock (Tsuga Canadensis) and
used SpecTIR’s VNIR sensor to locate incipient emerald ash borer (Agrilus planipennis)
infestations in various Fraxinus spp. (Pontius et al. 2008).

In an attempt to merge the information and detail available from hyperspectral imagery
with the widespread availability of multispectral imagery, a forest decline assessment method
is proposed that hinges on three novel components. First is the characterization of forest
condition for image calibration using a detailed, continuous summary decline rating that
captures a gradient of vegetation stress symptoms (Pontius and Hallett forthcoming). This is
a departure from the broad classes of canopy condition typically used to assess forest decline.

Second is the consideration of a suite of vegetation indices, including narrowband-
derived indices typically utilized only with hyperspectral sensors. Because these narrow-
band indices are based on the assumption that biophysical characteristics symptomatic of
vegetation stress are characterized in narrow absorbance features, it is unlikely that a
broadband sensor is able to quantify these specific parameters with the same precision as
narrowband sensors. However, it is possible that calculating a broadband ‘equivalent’ of
narrowband-derived indices (see Section 2.2) could capture unique characteristics of
vegetation stress that may be useful in decline assessments.

The final component of the proposed approach involves the development of a multi-
variate predictive model that combines a suite of indices, with careful consideration of



pronged approach can provide a more detailed and accurate assessment of forest condition
than models based on traditional indices.

2. Methods

2.1. Field methods

This study builds on prior hyperspectral efforts (Pontius, Hallett, and Martin 2005a,
2005b) in the Catskill Mountains region of NY (Figure 1). The Catskills were selected
based on the convergence of many forest stress agents, range of species composition, and
elevational gradients. It is also a key source of water for the New York City metropolitan
area, making the function and condition of its forested watersheds of prime interest. In
2007, forty-three forest-monitoring plots (Figure 1) were visited across the region span-
ning a range of forest condition, species, and site characteristics. This included plots
dominated by maple (Acer), birch (Betula), pine (Pinus), hemlock (Tsuga), oak (
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taken in the field, percentage fine twig dieback, and percentage live crown and crown
vigour class following Forest Health Monitoring guidelines (USDA 1997). Additional
measures of percentage new growth were included for hemlock, while percentage defolia-
tion was subjectively assessed into 10% increments for hardwoods.

In order to summarize information from each of these measurements into one con-
tinuous, summary decline rating, each variable was standardized to a 0–10 scale based on
species-specific population distributions from over 10 years of field sampling across the
northeastern USA (available from the author upon request). Using percentiles based on a
minimum of 100 individuals and spanning a full range of possible tree conditions, from
optimal health to dead, each decline variable was normalized and standardized by species.
Percentile assignments for all measured decline symptoms were then averaged for each
tree to produce a continuous summary decline rating for each tree. Plot-level condition for
image calibration was calculated as the average of all trees weighted by species percen-
tage basal area. This plot-level-weighted average percentile scores was multiplied by 10 to
force a 0–10 decline scale. To exemplify this process, field measurements, standardized
percentiles, and final decline rating calculations are presented in Table 1.

The resulting plot-level decline summary rating ranged from 2 to 5.97, with a mean
of 4.02 and standard deviation of 0.68. Combining multiple stress characteristics into
one summary decline rating provides a comprehensive, continuous measure for more
detailed image calibration, from early reductions in photosynthetic function (chlorophyll
fluorescence) to indicators of imminent deat

http://glovis.usgs.gov/
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vegetation stress characteristics. Equivalences were used for any index where the narrow-
band required for calculation was contained within the Landsat spectral range, and all
variables required for index calculation fell within distinct bands. As an example where a
Landsat equivalent could be calculated, consider the chlorophyllb-sensitive index pro-
posed by Datt (1998). This narrowband index is calculated as (R672 nm/R550 nm).
Considering that Landsat-5 (TM) band 2 ranges from 520 to 600 nm and band 3 measures
between 630 and 690 nm, I calculated a broadband equivalent to Datt’
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based on a ratio between normalized reflectance at 450 nm where both carotenoids and
chlorophylls demonstrate strong absorbance, and reflectance at 680 nm where only
chlorophylls absorb. SIPI characterizes the proportion of total photosynthetic pigments
to chlorophyll pigments (Peñuelas, Baret, and Filella 1995). Because vegetation stress
typically manifests as reductions in photosynthetic pigments, changes in the ratio between
pigment types have been successfully used to characterize early decline symptoms in
vegetation (Peñuelas et al. 1994).

The strongest broadband-derived index correlate with the summary decline metric was
the moisture stress index (MSI, ρ = 0.332) (Rock et al. 1986). A simple ratio of bands 5
and 4, this index makes use of repressed reflectance due to water absorbance in band 5, in
combination with the water-insensitive NIR band. MSI has been significantly correlated
with measured water content in multiple species (Cho and Skidmore 2006; Hunt and Rock
1989; Harris, Bryant, and Baird 2006). In 2007 there were no documented periods of
abnormally dry conditions across the study area (five growing season weeks in abnormal
status). However, water availability is a common stress agent in the Catskills, due to
extensive areas of steep terrain and rocky, shallow soils.

Another broadband index significantly associated with the summary decline rating
was the normalized difference infrared index (NDII5, ρ = – 0.321; Hardisky, Klemas, and
Smart 1983). Also based on the water-sensitive band 5, NDII5 increases with increasing
canopy water content and has been associated with vegetation water content (Hardisky,
Klemas, and Smart 1983) and water stress detection in agricultural crops (Jackson et al.
2004). In contrast, Hunt and Rock (1989) concluded that indices derived from near
infrared and mid-infrared reflectance were not sensitive enough to remotely sense water
stress. Because equivalent water thickness is correlated with leaf area index, water-
sensitive indices such as NDII5 are also a proxy for leaf area and canopy density
assessments (Hunt and Rock 1989). In this way NDII5 has also been used for forest
canopy monitoring, including timber extraction intensity (Souza, Roberts, and Cochrane
2005) and post-hurricane forest damage (Wang et al. 2010).

Much of Carter’s work has focused on identifying key narrowband indices for both
vegetation stress detection and estimation of various pigment concentrations (Carter 1994;
Carter, Cibula, and Miller 1996; Carter and Knapp 2001; Carter and Miller 1994; Carter
and Spiering 2002). Although designed using narrowband field and laboratory sensors,
one of the indices that he developed for early stress detection was also a significant
correlate with the summary decline value (ρ = 0.3237) (Carter 1994) in its broadband
form. Referred to here as Carter Stress ratio e (CSe), this simple ratio is based on the
relatively strong vegetation stress response at R694, in conjunction with the relatively
insensitive R420. CSe has been used to successfully differentiate stressed from non-stressed
vegetation across various vegetation species and stress agents (Carter 1993, 1994). This
consistent reflectance response has been attributed to stress-induced inhibition of chlor-
ophyll production (Carter 1993). It has also been identified as a potential index for early
stress detection, with early and consistent index response to induced stress in soybeans
from day two of treatment until canopies collapsed at day seven (Carter and Miller 1994).

3.2. Decline predictive model

Considering that the field-measured summary decline rating incorporates multiple stress



calibration, I used a mixed, stepwise linear regression to identify the best fit predictive
model. The resulting five-term model is based on a combination of narrowband-derived
indices and Landsat-5 (TM) reflectance band 5 (Table 3). Each of these variables are
sensitive to unique decline symptoms, including chlorophyll content, ratio of chlorophyll
to carotenoids, canopy density, moisture content, and chlorophyll fluorescence. Because
each predictor variable is associated with unique, stress-related biophysical characteristics,
correlation between variables was negligible (maximum model VIF = 3.9).

Across 11 distinct forest types, the resulting equation was able to predict the contin-
uous 0–10 summary decline rating with r2 = 0.621, RMSE = 0.403, and jack-knifed
PRESS RMSE = 0.436 (Figure 2). For comparison to more traditional categorical assess-
ments, the 0–10 continuous summary decline rating was rounded to the nearest integer to
assess accuracy for a 10-class scale, resulting in 65% accuracy. A coarser class compar-
ison was conducted by including predictions within 1-class of the correct category in the
accuracy count. This ‘within one’ approach resulted in 100% accuracy, indicating that

Table 3. The final multivariate decline equation included five terms calibrated using Landsat-5
(TM) imagery over the Catskills, NY. Predictor variables each contribute unique information related
to biophysical characteristics of vegetation stress.

Term
Paremeter
estimate Absorbance feature Reference

Intercept −51.763
B5 0.946 Canopy moisture content, leaf

area index, and total biomass
Vieira et al. (2003)

Aoki 0.706 Chlorophyll content Aoki, Yabuki, and
Totsuka (1981)

MCARI2 (modified
chlorophyll absorption
ratio)

−0.236 Green leaf area index Haboudane et al. (2004)

SIPI (structural
independent pigment
index)

54.536 Carotenoids: chlorophyll Peñuelas, Baret, and
Filella (1995)

Flo (chlorophyll
fluoresence index)

0.451 Chlorophyll fluoresence Mohammed, Binder,
and Gillies (1995)
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Prunus
Betula
Fagus
Tsuga

r2 = 0.621, r2 Adj = 0.58
RMSE = 0.403
Press RMSE = 0.436
5 class accuracy 100%

Figure 2. The final 5-term model was able to predict the 0–10 continuous summary decline rating
with greater accuracy than traditional indices. While this equation holds across species, there is a
tendency for plots at the extreme ends of the scale (highly productive and in severe decline) to be
under- and over-predicted, respectively.

International Journal of Remote Sensing 3393

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
V

er
m

on
t]

 a
t 1

2:
14

 2
2 

A
pr

il 
20

14
 



errors involved in model prediction are typically minor and do not exceed what would be
necessary to accurately assign coarse categories of forest condition.



tells us that the image pre-processing and atmospheric correction completed as a part of
this study is sufficient to minimize this potential interference across image area and image
acquisition dates.

A fluorescence index (Flo) was also retained in the final predictive model.
Chlorophyll fluorescence can be used as an indirect measure of reductions in chlorophyll
structure and function that typically occur in the earliest stages of vegetation stress
(Strasser, Srivastava, and Govindjee 1995; Strasser and Tsimilli-Michael 2001). In field
calibration measurements, I used a chlorophyll fluorescence meter to quantify this early
stress symptom as the performance index (PI). PI is an estimate of how efficiently a leaf
can absorb and use light while performing photosynthesis by quantifying the fluorescence
response of leaves (Strasser and Tsimilli-Michael 2001). Such chlorophyll fluorescence
metrics are shown to be an efficient tool to detect disturbances and damage to photo-
synthetic apparatus and function (Lichtenthaler 1992).

To capture the chlorophyll fluorescence response using reflectance spectra,
Mohammed, Binder, and Gillies (1995) designed a narrowband ratio between first deri-
vatives at F690 and F735 nm (Flo). Similar combinations of narrowband wavelengths in
these regions have been used to quantify fluorescence (Lichtenthaler and Babani 2000;
Buschmann and Lichtenthaler 1999; Gitelson, Buschmann, and Lichtenthaler 1999;
Lichtenthaler et al. 1998; D’Ambrosio, Szabo, and Lichtenthaler 1992; Hak,
Lichtenthaler, and Rinderle 1990; Rinderle and Lichtenthaler 1988). Regardless of the
differences in specific narrowband location, each of these proposed fluorescence metrics
can be modified for broadband calculation as Landsat-5 (TM) (B4-B2)/(B5-B3) (Table 2).
Because of the direct measurement of fluorescence in the field calibration data, it is not
surprising that a chlorophyll fluorescence index was retained in the final predictive model.
It is likely that this index contributes predictive power at the low end of the summary
decline rating, where reductions in chlorophyll structure and function are the dominant
stress symptoms.

Based on a simple ratio between narrowband reflectance at 550 and 800 nm, the Aoki
index (Aoki, Yabuki, and Totsuka 1981) was designed as a non-destructive method for
estimating leaf chlorophyll concentration in multiple agricultural species. Blackburn and
Steele (1999) also linked the Aoki index to total chlorophyll concentration in a laboratory
study of deciduous leaves. However, they found an exponential relationship, indicating
that the index may become insensitive at high chlorophyll concentrations. Saturation of
the Aoki index would be expected at the low end of the decline rating scale. Considering
this potential insensitivity to early decline, it is therefore not surprising that Aoki was not
found to be a significant linear correlate with the summary decline rating. But as a
predictor in a multivariate model, Aoki may contribute significantly to differentiating
the more severe decline symptoms to which the other predictor variables (SIPI and Flo)
are not as sensitive.

Similarly, MCARI2 is an index more sensitive to later symptoms of decline such as
defoliation and canopy thinning through estimation of green leaf area index (LAI).
Developed by Haboudane et al. (2004), MCARI2 is a modified variant of a spectral
index originally intended to measure photosynthetically active radiation related to chlor-
ophyll absorption. The goal of this modification was to create an index less sensitive to
chlorophyll effects, more responsive to green LAI variations, and more resistant to soil
and atmosphere effects (Haboudane et al. 2004). MCARI2 demonstrates a clear linear
relationship with leaf area index, without a pronounced change of the slope or saturation
at higher chlorophyll concentrations (Wu et al. 2010). Because reductions in leaf area
index are most noticeable when decline includes more severe levels of dieback,
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senescence, and general canopy thinning, it is likely that the MCARI2 index is providing
information pertinent to distinguishing stands in more advanced stages of decline.

Water-sensitive bands provide insight to a stress characteristic that, while not directly
measured in the field calibration data, provide an indirect assessment of canopy condition.
Because many of the stress agents in the region, such as seasonal drought and heat stress,
result in loss of turgor pressure, while other stressors such as hemlock woolly adelgid and
beech bark disease impede stomatal conductance of water from roots to leaves, it is not
surprising that a water-sensitive spectral region is included in the final model. Stress
related to leaf water content is picked up in the mid-IR from 1400 to 2500 nm (covered in
part by Landsat-5 (TM) band 5 at 1550 to 1750 nm) due to severe leaf dehydration and
the accompanying decreased absorption by water (Carter 1993; Hunt and Rock 1989;
Jensen 1996). There are several indices that make use of the spectral region covered by
band 5 for canopy water content assessments. However, in the final stepwise regression
model this single band provided a stronger, unique contribution to decline assessment than
more complex moisture-sensitive indices based on multiple bands. Aside from its sensi-
tivity to canopy moisture, other studies have also used Landsat-5 (TM) band 5 to assess
forest biomass, species diversity, tree size, density, and leaf area index in tropical forests
(Vieira et al. 2003).

3.3. Model comparison to traditional indices

In order to quantify how the multivariate model compares to the more common
approach of utilizing individual indices, calibrations were also completed for several
of the most common traditional broadband indices. The most accurate broadband index
was NDVI (r2 = 0.351, RMSE = 0.501). This is a notable departure from the accuracy
obtained using the multivariate model discussed above (r2 = 0.621, RMSE = 0.403).
However, it is important to consider that NDVI is typically used to assign broad classes
of canopy condition, as opposed to a continuous decline rating. NDVI accuracy as a
class variable (10-class = 60%, 5-class = 74% accuracy) is consistent with previous
studies utilizing Landsat to categorize forest decline (Lambert et al. 1995; Royle and
Lathrop 2002; Wang, Lu, and Haithcoat 2007; Arsenault et al. 2006), with 75%, 82%,
76%, and 70% accuracy respectively. Treated as a class variable, the multivariate model
proposed here is more accurate (10-class = 65%, 5-class = 100% accuracy) than any
previous efforts using NDVI alone.

It is likely that NDVI does not predict the summary decline rating as well as the
multivariate model, because of the inclusion of very early decline symptoms (fluores-
cence) in field calibration measurements. NDVI is known to saturate in dense canopies
(Wang et al. 2010) and may not be able to distinguish the early stress response of
decreased photosynthetic function that occurs in canopies that are still relatively dense.
It is also possible that the inherent difference in NDVI across species confounds the stress
signal within any given species.

To examine how multivariate output differs from traditional multispectral assess-
ments across a landscape, I applied both the NDVI and multivariate calibrations to all
pixels in the study region (Figure 3). While both NDVI and the multivariate model
identify ‘hot spots’ of severe forest decline, the broader assessment of regional canopy
condition and detail contained therein differ markedly between the two. Based on field
data, NDVI over-predicted all plots in the 0–3 decline summary range, essentially
lumping healthy stands with those in early decline. This is evident in the NDVI-
predicted decline coverage (Figure 3



pixels than the multivariate model. This is probably a result of the tendency of NDVI
to saturate at very high canopy density values (Wang et al. 2010). While this limits the
ability of NDVI to monitor subtle changes in forest condition, it also alters the overall
assessment of canopy conditions across the landscape. For the Catskills study area, the
average predicted summary decline rating for the multivariate model was 3.97, com-
pared with NDVI’s 5.12. The field-measured average for the region was 3.93. This
indicates that a regional analysis using NDVI would potentially overestimate decline
conditions.

If the goal is to identify only stands in moderate to severe decline, this may not be of
concern. If, however, the goal is to identify early stages of decline, such as those
associated with incipient infestations by exotic pests and pathogens, the level of detail
provided by the multivariate model would be critical.

It was outside of the scope of this work to compare additional calibration techni-
ques. Instead, the focus was to investigate a suite of easily computed values that
would be robust across species and stress agents for forest decline assessment. I
recommend that future efforts to monitor forest decline consider this approach in
order to maximize the information and accuracy possible with broadband sensors so
widely available at this time.

4. Conclusions

The overarching goal of this study was to determine whether more detailed and accurate
assessments of canopy condition can be achieved using the commonly available multi-
spectral imagery. This approach was unique in several ways: (1) the use of a detailed,
continuous summary decline rating for ground truth and model calibration; (2) considera-
tion of narrowband-derived vegetation indices adapted for broadband data; and (3)
calibration with a multivariate model designed to capture a range of decline symptoms.
I found that forest condition could more accurately and consistently be predicted using a
multivariate predictive model that includes consideration of narrowband derived indices.

Multivariate Model

Predicted
Decline

10

0

NDVI

Figure 3. A comparison of the multivariate and NDVI predictions of forest condition at Woodland
Valley (∼UTM WGS84 556300 E 4656000 N), a region of severe hemlock woolly adelgid
infestation. While both models detect similar locations of more severe decline, NDVI is not able
to discriminate between healthy canopies from those in the early stages of decline. As a result, the
NDVI assessment of the region suggests higher average decline condition across the region than the
multivariate model and field measurements.
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The final 5-term linear regression model is based on existing narrowband-derived vegeta-
tion indices known for their sensitivity to chlorophyll structure and function, canopy
density, and moisture content. To my knowledge, these narrowband indices have never
been modified for multispectral application because of a widespread assumption that
absorbance features targeted by the narrowband wavelength combinations are not detect-
able in the broadband imagery. While it is true that the original narrowband indices are
likely to more accurately quantify the specific biophysical parameters for which they were
designed, these results indicate that when calculated using broadband data, information
relative to canopy condition is retained in spite of a loss of spectral resolution.
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