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(1995) assessed the utility of multiseasonal TM data for forest type
mapping in New Hampshire and found that October imagery improved
classification accuracy. Several researchers (DeGloria et al. 2001, Laba
et al. 2002, Slaymaker et al. 1996) used enhanced and multi-temporal
satellite data for regional land cover mapping associated with the USGS
Gap Analysis Project. Mickelson et al. (1998) tested multitemporal TM
data for mapping forest species in northwestern Connecticut. Foody
(1999) explored the concept of fuzzy classification, and suggested that
fuzzy concepts are relevant throughout the classification process, espe-
cially when mixed pixels are common. The combination of multi-tem-
poral classification, ancillary data, and the species-specific spectral
indices described here integrates many of these methods to produce a
detailed map of the Catskills.

Description of the Study Area

The Catskill Mountains occupy a large area in southeastern New
York State that includes significant portions of Delaware, Greene,
Otsego, Schoharie, Sullivan, and Ulster counties (Fig. 1). The map
described in this paper is delimited by the boundary of the Catskill Park,

Figure 1. Map of New York State showing county boundaries and the location of
the study area.
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a preserve occupying 2817 km2 that is embedded in four of these
counties. About 40% of the land within the Catskill Park is part of the
New York State Forest Preserve and the rest is privately owned. Forest
Preserve lands are protected from logging, road-building, and other
kinds of local human disturbance, but most of the Catskill area has been
altered by logging, agriculture, and fire since the time of human settle-
ment in the region (McIntosh 1972). Despite these disturbances, some
significant tracts of first-growth forest remain (Kudish 2000).

The climate of the Catskills includes cool summers and cold winters,
both of which contribute to the popularity of the area for resorts and
tourism. Elevations in the park range from 51 to 1219 m, reflecting the
rugged character of the Catskills that produces a range of climate condi-
tions across the area. The Slide Mountain weather station (808 m eleva-
tion) in the central Catskills reports a mean annual temperature of
4.3 oC, and annual precipitation of 153 cm with about 20% falling as
winter snow (Lovett et al. 2000). Both temperature and precipitation
vary substantially with elevation in the Catskills (Kudish 2000).

Lovett et al. (2000) provide a general description of forest vegetation
which we summarize here. McIntosh (1972) provides more details.
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some target dates and because of the cost of some satellite scenes.
Within these constraints, we purchased Landsat TM data (Path/Row =
14/31) for dates capturing the widest possible range of phenological
change. These dates included scenes from 28 April 1989 (leaf-off), 9
May 1993 (low elevation greenup), 21 June 1991 (full leaf-on) and 29
October 1986 (oak leaf-on, all other species leaf-off).

All data were geographically and terrain corrected by the U.S. Geo-
logical Survey (USGS) and projected into the UTM (Zone 18) projec-
tion. TM data have a spatial resolution of 30 m and include 6 reflected
spectral bands ranging from visible through infrared wavelengths, and
an emitted thermal band. The thermal band was not used for mapping in
this project.

Digital elevation models (DEMs) were provided by the USGS with
each TM scene acquired from the USGS Multi Resolution Land Charac-
terization (MRLC) Program. These DEMs were registered to the satel-
lite data and are of the same horizontal spatial resolution (30 m). DEM
data were used in the classification to help differentiate conifer species.

Ground data acquisition
Species composition data were collected in the Catskills by the

Institute of Ecosystem Studies (IES) staff during the summers of 1999,
2000, and 2001. These data were the basis for “training sites” used for
supervised classification of satellite imagery. Ground data were also
collected by IES in 2001 for map accuracy assessment, and were supple-
mented by data collected by the New York City Department of Environ-
mental Protection (NYCDEP) on their property in the Catskills. The
NYCDEP data were collected with the same field methods used by IES
personnel. NYCDEP and IES data were combined to create a single
larger field data set.

Ground data were collected at 249 sites, located along trails in the
Catskills to avoid the difficulties of accessing more remote areas. This
along-trail sampling was a compromise between statistical rigor and
practical necessity, an unavoidable tradeoff resulting from time and
budget constraints. Initially, randomly distributed sites throughout the
Catskills were targeted for assessment. Because it soon became appar-
ent that reaching these sites was not logistically practical, we shifted to a
trail-based method. We chose 5 trails from different regions of the
Catskills that provided elevation ranges characteristic of the topography
in their vicinity. For each trail, we divided the elevation range into 10–
12 equal intervals. At the midpoint elevation of each interval, we
sampled two plots, one on each side of the trail, each at a distance of
150 m from the trail on a line perpendicular to the trail. This provided a
stratified sample of the forest at different elevations in a 300-m-wide
swath bisected by the trail. Because the sample points were determined
prior to sampling, the selection of stands was not biased by subjective
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considerations in the field, but sampling was biased by the more funda-
mental choice of sites only along trails. The consequences of this sam-
pling bias are discussed in the map accuracy assessment section to
follow. Accuracy assessment data were not used for classification train-
ing to maintain their statistical independence.

For training and accuracy assessment, basal area of all trees > 10 cm
diameter (breast height) was measured on multiple subplots within a
1-ha plot, using either fixed-area subplots or variable area-sampling
with a forester’s prism (Avery and Burkhart 1994). The prism method
was used for faster sampling in areas where only canopy information
was needed, rather than the full assessment of canopy and understory
vegetation available from the fixed-plot measurements. Both methods
measured all canopy trees, so for the purposes of this study the two
methods are equivalent. Total basal area was calculated by species for
each plot. Coordinates of plot centers were acquired using Garmin
GPS12 and Trimble Pathfinder ProXL GPS equipment, both of which
have autonomous positional accuracy of 15 m RMS. Large plots with
multiple subplots were used to ensure that plots were larger than the
spatial uncertainty introduced by GPS error. Of the 249 total sites
visited on the ground, 135 sites representing the range of target classes
were selected for training data, and the remaining 114 were set aside for
accuracy assessment. Training data were based on ground sampling
sites and reconnaissance by the authors in the Catskills.

Landcover classification scheme
Spruce-fir, hemlock, oak, beech, maple, and an “other” class includ-

ing ash (Fraxinus sp.), black cherry (Prunus serotina Ehrh.), aspen
(Populus sp.), and other tree species were initially identified as impor-
tant for the biogeochemical analysis of Catskills watersheds. Because
ground data included quantitative information about species basal area
at each training site, we developed a classification system comprised of
a more detailed list of forest types (Table 1) as well as three non-forest
classes. To test our ability to map subtle differences in types, we main-
tained the detailed classification during the remote sensing analysis and
then lumped types into several levels of aggregation (24, 8, 4, and 3
classes) for accuracy assessment.

For the classification scheme, a species (or species group) is consid-
ered dominant if it collectively occupies more basal area in a plot or
pixel than any other species (or species group). To be considered a
significant component, a species in these pixels must occupy within
25% of the proportion of total basal area of the dominant type. If maple
occupies 60% of a pixel, for example, beech must occupy at least 35%
of the pixel to be included as a significant subdominant. These defini-
tions recognize species occupying portions of the total tree basal area in
each map unit.





Northeastern Naturalist Vol. 11, No. 4428

encountered that are not described here. Experiments included enhance-
ment of the data (e.g., principal components analysis, Kauth’s tasseled
cap, image texture) and tests, using Erdas Imagine, of their power to
discriminate training classes. For example, we experimented to see if
normalizing vegetation indices for elevational effects on phenology
would aid in discrimination, but discarded this method because no signifi-
cant classification improvement was realized. Spectral signatures for
classes represented in the ground data were generated for various data
enhancements. Data accentuating spectral differences between vegeta-
tion classes were used, along with the ground-based training data, to
generate a series of supervised classifications. Land cover classes from
these supervised classifications were added incrementally to an evolving
draft map that eventually became the final map (Fig. 3).

Figure 2. Flowchart showing the processing tree used to create the Catskills
vegetation map. Intermediate classes are contained within ovals and final
classes within green rectangles. Processing steps and rules are in described in
text outside of the boxes and ovals. See text for explanation.
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deciduous species was the core objective of this project, and the data used
to distinguish these species evolved from trial and error using many
combinations of spectral data. The final product resulted from a super-
vised maximum likelihood classification, based on all of the training data,
and applied to a 10-band image developed from four data enhancements.
These enhancements included: 1) the temporal profile (4 dates) of the 2nd
Tasseled Cap (TC) (Kauth and Thomas 1976) component, 2) the temporal
Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1973)
profile (4 dates), 3) an oak index, and 4) a maple index. By using the
temporal profiles of the tasseled cap and the NDVI, we were able to
exploit phenological differences in the spectral data.

The final map (Fig. 3) is a combination of the classifications at the
end of each branch of the classification tree (Fig. 2). Our approach
allowed different components of the map to be separated according to
different data combinations that best distinguished them.

Figure 3. The landcover map of the Catskill Park aggregated to show 7 dominant
species groups and 3 non-forest types. Reference grid is in UTM Zone 18
(Clarke 1866) and major roads and shaded relief are included for orientation.
The digital map including all 24 mapped classes is available from the authors.

Catskills LandcoverCover Type
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Map accuracy assessment
Thematic map accuracy assessment is based on comparing places

on a derived map to reference data, presumed to accurately describe
the characteristics of corresponding places on the ground. Map accu-
racy can be expressed in the context of binary scores (right vs. wrong)
for each assessment site, an approach that we call “traditional accuracy
assessment” and includes calculation of overall, user’s, and producer’s
accuracy (Congalton and Green 1993). An alternative, called fuzzy
accuracy assessment (Gopal and Woodcock 1994), uses a verbal scale
(Table 3) defining degrees of error. We calculate a fuzzy accuracy
descriptor called the “RIGHT operator” developed by Gopal and
Woodcock (1994). This measure counts a mapped pixel as correct if it
is considered a “reasonable or acceptable answer” or better for the site
as it is described in the ground validation data. To assign scores from
Table 3 to mapped pixels at each validation site, we compared the
mapped type to the distribution of basal areas by species for that site
and summarized these comparisons.

In total, 114 sites were used for accuracy assessment. Sites were



Northeastern Naturalist Vol. 11, No. 4432

Results

Map characteristics
Catskills vegetation is dominated by deciduous tree species, al-

though non-forest and conifer species are a significant component of the
landscape. Specifically, non-forest types (including open water) collec-
tively occupy 12.7% of the Catskill Park. Deciduous cover types occupy
71.6% and include maple-dominated types (43.5%), beech-dominated
types (10.4%), oak-dominated types (9.4%), and other types (3.6%).
Evergreen-dominated types occur in 4.3% of the area and include hem-
lock (3.6%) and spruce-fir dominated types (0.7%). Mixtures of coni-
fers and deciduous species cover 11.5% of the area (Table 4).

Broad patterns of tree species dominance are evident in the Catskills
map (Fig. 3). In general, maple species dominate over much of the
Catskills Park. Oak species occupy significant areas in the east, and
beech types are prevalent in the south-central portion of the park west of
Slide Mountain. Evergreen coniferous trees occur in scattered patches
throughout the Catskills, particularly along riparian corridors and at
high elevations.

Table 4. Area (km2) and proportional area (% total) occupied by each of the 24 land cover
classes within the boundaries of Catskills Park. Cover codes match the pixel values in the
digital map.

Class # Cover type Area (km2) Area (% total)

1 Water 62.88 2.2
2 Non-forest 130.23 4.6
3 Human built up 164.69 5.9
4 Oak/mountain laurel forest 123.98 4.4
5 Oak forest 27.69 1.0
6 Oak/maple forest 103.67 3.7
7 Oak/beech or birch or “other” forest 8.69 0.3
8 Maple forest 481.10 17.1
9 Maple/oak forest 157.72 5.6

10 Maple/birch forest 85.86 3.1
11 Maple/beech forest 204.60 7.3
12 Maple/birch/beech forest 291.64 10.4
13 Maple/other forest 0.00 0.0
14 Birch forest 122.93 4.4
15 Birch/maple or beech or “other” forest 11.37 0.4
16 Beech forest 23.26 0.8
17 Beech/maple forest 214.87 7.6
18 Beech/other forest 56.82 2.0
19 “Other” forest 0.00 0.0
20 “Other”/maple 102.52 3.6
21 Spruce/fir forest 19.29 0.7
22 Hemlock/pine forest 101.02 3.6
24 Spruce/fir/deciduous forest 24.23 0.9
25 Hemlock/pine/deciduous forest 298.31 10.6
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Spectral and temporal indices
As part of the remote sensing analysis, we developed oak and maple

indices to highlight phenological characteristics of these key species.
These enhancements highlighted specific aspects of the spectral re-
sponse of maple and oak in the Catskills. Maple and oak indices accen-
tuated features of the temporal NDVI and TC2 profiles, respectively.
The maple index used the formula:

(June NDVI/May NDVI)/(May NDVI/April NDVI)

Similarly, the oak index was calculated as:

(June TC2/May TC2)/(May TC2/April TC2)

These indices helped significantly for distinguishing oak and maple in
particular and deciduous species in general, and may be useful for other
mapping efforts in this region.

Table 6. Accuracy assessment of vegetation classification with 8 classes (lumped by
dominant genus). Overall, 46% of the reference vs. mapped vegetation comparisons are
perfect matches using this classification.

Reference Mapped type Producer’s
Type 4–7 8–13 14–15 16–18 19–20 21 22 24–25 Total accuracy

Oak (4–7) 10 1 2 1 14 0.71
Maple (8–13) 2 12 2 11 1 1 29 0.41
Birch (14–15) 5 6 2 13 0.46
Beech (16–18) 4 5 5 1 15 0.33
Other deciduous 1 3 3 7 2 16 0.13

(19–20)
Spruce/fir (21) 1 5 6 0.83
Hemlock/pine 1 1 2 0.00

(22)
Evergr./deciduous 1 2 2 1 13 19 0.68

mix  (24–25)
Total 14 27 20 26 3 7 1 16 114
User’s 0.71 0.44 0.30 0.19 0.67 0.71 0 0.81

accuracy

Table 7. Accuracy assessment of vegetation classification with 4 classes. Overall, 84%
of the reference vs. mapped vegetation comparisons are perfect matches using this
classification.

Reference Mapped types Producer’s
type 4–7 8–20 21–22 24–25 Total accuracy

Oak (4–7) 10 4 14 0.71
Other deciduous (8–20) 3 67 1 2 73 0.92
Evergreen (21–22) 1 6 1 8 0.75
Evergreen/deciduous mix (24–25) 1 4 1 13 19 0.68
Total 14 76 8 16 114
User’s accuracy 0.71 0.88 0.75 0.81
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Map accuracy assessment
We present results of both “traditional” map accuracy assessment

and “fuzzy” accuracy assessment. For this paper, we include contin-
gency tables summarizing the traditional approach (Tables 5–8), a sum-
mary of the fuzzy assessment (Table 9), and a brief discussion of both

Table 8. Accuracy assessment of vegetation classification with 3 classes. Overall, 90%
of the reference vs. mapped vegetation comparisons are perfect matches using this
classification.

Reference Mapped type Producer’s
type 4–20 21–22 24–25 Total accuracy

Deciduous (4–20) 84 1 2 87 0.97
Evergreen (21–22) 1 6 1 8 0.75
Evergreen/deciduous mix (24–25) 5 1 13 19 0.68
Total 90 8 16 114
User’s accuracy 0.93 0.75 0.81

Table 9. Fuzzy accuracy (RIGHT operator) summarized for individual mapped cover
types, and overall fuzzy accuracy for the Catskills land cover map. The percent correct for
each mapped cover type is the proportion of validation sites for which the comparison of
mapped type to validation site yielded a score of 3 or greater on the verbal scale presented
in Table 3. Overall fuzzy accuracy is the total number of scores greater than 3 divided by
the total number of validation sites (114). ND is No Data: mapped cover type has no
validation sites.

Class number Cover type Percent correct

1 Water ND
2 Non-forest ND
3 Human built up ND
4 Oak/laurel forest 83.33
5 Oak forest ND
6 Oak/maple forest 0.00
7 Oak/beech or birch or “other” forest 0.00
8 Maple forest 88.89
9 Maple/oak forest 0.00

10 Maple/birch forest 71.43
11 Maple/beech forest 33.33
12 Maple/birch/beech forest 66.66
13 Maple/other forest ND
14 Birch forest 73.68
15 Birch/maple or beech or “other” forest 0.00
16 Beech forest 0.00
17 Beech/maple forest 68.18
18 Beech/other forest 33.33
19 “Other” forest ND
20 “Other”/maple 66.66
21 Spruce/fir forest 85.71
22 Hemlock/pine forest 100.00
24 Spruce/fir deciduous forest 0.00
25 Hemlock/pine deciduous forest 93.33

Overall fuzzy accuracy 71.05
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criterion allows a pixel to be counted as correct even when the match is
not perfect. Fuzzy accuracy assessment complements traditional accu-
racy assessment and, in a sense, quantifies important aspects of the off-
diagonal elements in the traditional contingency tables (Tables 5–8) that
were described above. Secondly, overall map accuracy using this crite-
rion is about 71%. While this level of accuracy is comparable to other
remotely sensed maps in eastern deciduous forests (e.g., Mickelson et
al. 1998), it might be improved with other sensors or more intensive
ground surveys. Third, even by this criterion, beech and maple confu-
sion is evident and represents the most significant confusion in the map.

Discussion

Classification of forest types using multi-temporal Landsat TM im-
ages offers an alternative to traditional, single-image classification
methods and may allow discrimination of more deciduous forest types
in some situations (Mickelson et al. 1998). Detailed treatment of decidu-
ous species dominance is critical for biogeochemical modeling and may
also be useful for animal habitat studies, hydrologic modeling, and
monitoring changes in the Catskills park through time.

Oak-dominated forests can be distinguished from northern hard-
wood forests (dominated by beech, birch, and maple) with good accu-
racy using this technique, and this distinction is quite important for
ecological studies such as the biogeochemical modeling for which this
map was developed. The ability to distinguish accurately between oak
vs. non-oak types is particularly noteworthy and valuable because oak-
dominated forest types are biogeochemically unique in the Catskills
area (Lewis and Likens 2000, Lovett et al. 2002, Lovett et al. 2004).
Oaks are valuable because they are harvested for timber and because
they produce copious crops of acorns, which are an important part of the
diet of many wildlife species (Burns and Honkala 1990). In addition,
oak forests appear to inhibit the process of nitrate formation in the soil,
thus reducing nitrate loss to stream water (Lewis and Likens 2000,
Lovett et al. 2002, Lovett et al. 2004). Excess nitrate has been impli-
cated in the acidification of surface waters in the Catskills (Murdoch
and Stoddard 1992) and elsewhere (Aber et al. 2003).

The map reveals an interesting geographic distribution of forest
types in the Catskills. The dominance of maple types concurs with the
vegetation analysis of McIntosh (1972). At higher elevation, beech and
birch assume dominance over maple, and the tops of the highest peaks
of the Catskills can be distinguished by their spruce-fir vegetation on the
map (Fig. 3). The oak-dominated forests of the eastern Catskills may be
a result of disturbance, including both cutting and burning, by Native
Americans and, later, Europeans from the heavily-populated Hudson
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