Measuring Environmental Change in Forest Ecosystems by Repeated Soil Sampling: A North American Perspective

Gregory B. Lawrence,* Ivan J. Fernandez, Daniel D. Richter, Donald S. Ross, Paul W. Hazlett, Scott W. Bailey, Rock Ouimet, Richard A. F. Warby, Arthur H. Johnson, Henry Lin, James M. Kaste, Andrew G. Lapenis, and Timothy J. Sullivan

X X v ⊠. vØ X ⊠. \boxtimes X X X X 8v8 X X XX v X X \boxtimes X X X ⊠. X X X X X Øν X Øv Ø X X X X X X X 🛛 v X X X X ⊠1 X X X \boxtimes v v X X Øv X v X X v X ⊠. \boxtimes X X X X X X X X ⊠. X v - 🛛 X . 🛛 🖾 X Ø, vØ 88. X v X X X X \boxtimes 🛛 v X \boxtimes \boxtimes Ø, X X X X X X X vØ X X X X X X X vØ X

X NVIRONMENTAL CHANGE X X X X XX v X \boxtimes Ø, X X vØ X X X X X X X vØ X X •⊠. X ⊠, 🛛 , 1 , 1 XØv⊠, X V X X X \boxtimes . X X X X X X , 🛛 X X X X X X X X ⊠. X ØvØ X XX v 🛛 🖾 X X \boxtimes X X X ⊠ (X X , 1 X X ØvØ, v XX X X X X ⊠(X X (1 🗖. RXXXX RXXX (R.(1

Ø \boxtimes X X X 11 X X ,88 X X 88 X X X X

vØ X 1 ľ⊠ J. X X X ⊠. Ø, X •⊠, N X X X N X v. X Øv Ø X X Ø 🛛 v Ø X X X Ø ⊠, X X X X X X X X - 🛛 Ø ⊠. X NO 10 ØØ. X X 1 R Ø X X 10 v. 1 X ⊠, ⊠ X vØ v., 8, 8 J 1 X ⊠. 1 , v. X J. . v М v X X X

 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X

1, 1, 1 X X X X . 🛛 🖾 X X X X v 🛛 🕅 -X (1 X

Cg.adM.d.

ͺઽ<u>ૼ</u>ͺϗ_α ,ͺ୕ ϶

X 🛛 v × X \boxtimes \boxtimes v \boxtimes X \mathbf{v}_{i} X \boxtimes • × \boxtimes X \boxtimes \boxtimes X X ⊠ ⊠. \boxtimes

Spatial Variability

 \boxtimes X ×v X V. . ⊠,

Table 2. Selected forest soil resampling studies in North America.

Location	Time interval	Sampling design	Studied variables	Results	References
	yr				
Adirondack					
Mountains, New					
York					

×v× X \boxtimes X \boxtimes . v X X X V _ , X 88. X , X X X X X X X v X X X

Soil Sampling Techniques

Soil Pit Excavation 8 8v8 X X Ø, X \boxtimes X X X X X X X (⊠, . X X Ø, Ø, v 🛛 🖾 X v ⊠ ⊠ ., 1⊠11. X \boxtimes . (

 \mathbf{v} XX X X 88, 8v8, \boxtimes XX X X X ⊠. X X X X X X v. V X ⊠. X

X \boxtimes X \boxtimes . Xv X XX XXX . X , , , N 🛛 , , , ⊠, X \boxtimes 🛛 v X \boxtimes × X V ·- · · · . X VX, X V . 🛛 ⊠ _ . v ĭe v⊠ × ⊠., X X . . \mathbf{X} (🛛 v ×v \boxtimes \boxtimes \vee \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes v 🛛 ⊠.⊠
 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state
 Image: Solution of the second state

 Image: Solution of the second state
 Image: Solution of the second state< 0, 0, 0,

. K.
1 .1
1 (⊠, ™⊠ .
8. 8. v8. , . M M M M M M

Resampling of the Heimburger Plots

. . . . X X ⊠, \boxtimes v X X X X X X X 1 🛛 . \times XX v. 🛛 X \boxtimes X X X X X X XX . X X X X X X X X \boxtimes \boxtimes X X ((-NØ. -1 ⊠, X \boxtimes X (X X X -⊠, X X 1 (1 X ۰, X X X X ⊠, X X XX X 1 \boxtimes X (1 XX • -Abies 8 Øv J X X X balsamea (. X X \boxtimes (*Pinus strobus* . X ⊠ (Pinus resinosa \boxtimes ⊠ (Acer . , 🛛 . **M** (*Fagus grandifolia* saccharum . . , (Betula alleghaniensis X • **X** 1 , , \boxtimes \boxtimes 1 , \boxtimes X \boxtimes X X Ø, X X X , , 🛛 . -Tsuga canadensis(. X \boxtimes X \boxtimes X 1,

X

X X (1 X v🛛 . X X , X X X \boxtimes X -1 X \boxtimes \boxtimes X X $(\boxtimes \boxtimes)$ X X X X X . 🛛 🖉 X X

v X X X X (X X X X X , $(P \land \square \square)$ (\boxtimes X X X (X V V XX X J ⊠⊠,1 X .,1 , . (1 X \boxtimes X X X X-X X •⊠-X X XX X 8v8 X **X** (1 1 -1 X X 1 , 1 , , _ _ X X \boxtimes X I 1 X X •,

X X \boxtimes X X X X \boxtimes v. 🛛 X X X X ⊠,,,... \boxtimes XX Ø1 Ø. \boxtimes \boxtimes_V \boxtimes X, X -8 X X X . 🛛 \times \boxtimes \boxtimes X X •

Resampling in the Allegheny National Forest after 30 Years

1, X X X X v X v X X \boxtimes X v . \boxtimes \bigvee \boxtimes X 1 🛛 (**XX**1. X XX X X vX X V V X vX \boxtimes v . V . X X Øv \times vX × ×, X v 🛛 X ⊠, X \boxtimes Xv \boxtimes X \boxtimes vX • XX. NX. (. • XX(1₇ . (., **1** ▶ 🛛 (. 🖾 (11. (, -. (, v⊠ ⊠, 1.1(, -1)⊠. (, , ((⊠ RXXX ..

Fig. 3. Depth pro

	X	X - X		(1			
	X				,	🛛 🛛 J_	⊠ .(1 ,,
					\boxtimes		
1 🛛 . 🛛 🖾		X . (XX .	v 🛛				

Resampling Forested Soils in the Northeast to Detect Changes in Heavy Metal Content

		X		\boxtimes		v 🛛	X	
	X		\boxtimes			X	. 🛛	
	vX	\boxtimes	\boxtimes		\boxtimes	\boxtimes	(1	
X	\boxtimes			(×	X	\boxtimes	
XX	vX	\boxtimes			\boxtimes	\boxtimes		- ,
	X,		\boxtimes	V.			vX	\boxtimes
	⊠ .	X	×	\boxtimes			⊠,	
X	\boxtimes	\boxtimes	X					
	. ,	\boxtimes	v	, 8	- ,	,		

- ⊠,..1..-⊠
- 10.11 0 0
- ⊠⊠. 100,1001
- , . ., . 🕺 🛛 J. 🛛 , .