Use of Inductively Coupled Plasma-Mass Spectrometry in Boron-10 Stable Isotope Experiments with Plants, Rats, and Humans

Richard A. Vanderpool¹, Deb Hoff¹, and Phyllis E. Johnson²

¹United States Department of Agriculture, Agricultural Research Service, Grand Forks, North Dakota; ²United States Department of Agriculture, Agricultural Research Service, Albany, California

1		:		, ,	
	-	8-5			
627 <u>-</u>	¥ ≜	A			
-					
,					
1					
¥ m					
0					
7					
	1.000				
ji i					
۲ <u>ــــــــــــــــــــــــــــــــــــ</u>					
ģ.					
1					
1.1.					
1					
-					
A .					
•					
•					
×					
	•				
·					
	1 · · · ·			huminal analytical analyticate for	food com
<u>дк. </u>	DILL APPSontrations and	A actions to logarine evidence to complex w	עד מטונגינכטטע טופעיפע ורשופיעז חזיע/	Caminal analiginal coglianca IOF	narran Watthe

	Table 1. Offline calculations summary.			passed through a Scott double bypass spray	
	1 2 3 4	${}^{9}I_{1}^{10}I_{1}^{11}I_{1}^{11}I_{Nor} = I_{n} \times ({}^{9}I_{1} / {}^{9}I_{n})$ I_{Avg} , RSD $I_{Corr} = (I_{Smpl} - I_{Ablk}) - (I_{Dblk} - I_{Ablk})$	Raw peak integrals Normalize / run Average and statistics Blank subtraction (acid and digestion)	chamber of borosilicate glass to remove larger aerosol particles and some of the water load as the spray chamber is cooled to 6°C. Boron contamination from the glass spray chamber seems to be minor	
r					
_					
	6	$R_{Corr} = {}^{Smpi}R_{Obs} \times ({}^{SRM}R_{iit} / {}^{SRM}R_{Obs})$	Bias correction	in acid blanks (see below). The aerosol	
	7	$^{11}B = (^{11}I_{corr} - b) / m$	Regression curve and nmole / ml	then flows into a quartz torch where a radio-frequency (RF) field supports an	
	8	${}^{10}B_{Tot} = {}^{11}B \times ({}^{10}B/{}^{11}B)$		argon plasma in which the sample is ion-	
	9 10	$^{10}B_{NA} = ^{11}B_{NA} \times (^{10}B / ^{11}B)_{NA}$		ized in a 7500-K plasma and is extracted	
		$^{10}B_{Sk} = ^{10}B_{Tot} - ^{10}B_{NA}$		from the plasma with the use of two	
	Abbreviations: ⁹ <i>I</i> , raw peak integral, ⁹ beryllium (Be); ¹⁰ <i>I</i> , raw peak integral, ¹⁰ Be; ¹¹ <i>I</i> , raw peak integral, ¹¹ Be; <i>I</i> _{Nor} , normalized integral, <i>I</i> _{Avg} , average integral for each isotope; <i>I</i> _{Corr} , corrected integral; <i>I</i> _{Smp1} , integral of sample; <i>I</i> _{Abk} , integral for acid blank. <i>I</i> _{obt} , integral for digestion blank; <i>R</i> _{obs} , isotope ratios; ¹¹ <i>I</i> _{corr} , corrected integral for ¹¹ boron			cones, a sample and a skimmer cone. The cones feed the sample into a vacuum sys- tem and through a leng stack which	
	·				

ة. يربع

Ns. _____ I...

<u>[u</u>

Dwell	Scans	Time	%RSD (n = 20) ^b			
µsec	per min	sec	۶Be	¹⁰ B	¹¹ B	R _{(11/10}
10240	450	100	1.5	1.1	1.2	0.6
5120	490	60	1.6	1.5	1.3	0.6
2560	530	40	1.8	1.7	1.7	0.9
1280	560	35	2.0	1.8	1.7	1.3
80	1100	10	2.3	3.1	2.8	2.4

coefficient, R, was greater than 0.999 for the calibration curve. The 1% HNO₃ blank used in the calibration ranged from 3 to 5 ppb with much of the boron contamination coming from the laboratory prepared subboiling distilled HNO₃. Detection limits were determined as three times the standard deviation $(3 \times 1\sigma)$ of an acid blank by collecting 10, 1-min counts in single ion monitoring. The detection limit for ¹¹B was calculated at

R, isotope ratio. RSD, Relative standard deviation. *50 ppb beryllium (Be) and 50 ppb boron (B) (National Institute of Standards and Technology Standard Reference Material 951); average of 20 accumulations per isotope for an ayerane ⁹Be neak integral of 16 891 + 200 ^bn.=10.for.5120.user_dwell

(j. j		

1		
n		
7 6		
•		
)/==		
1		
1		
Table A laduationly coupled plane		cally 10 ppb, so sample concentrations
Transformation of the second s	mass snertrometry autosampler load sequence for facal sample *	cally 10 ppb, so sample concentrations
Train Andurtively counted plasma.	mass snortrnmotry autosamplar load someoneo for foral sample a	cally 10 ppb, so sample concentrations
Tran Andurtively counted plasma.	mass snortromotro autosamo <u>lor load socuence for foral sample *</u>	cally 10 ppb, so sample concentrations
Te bla / Inductively counted nlasma I I I I I I I	mass snertrometro autosam <u>oler load sequence for feral sample *</u>	cally 10 ppb, so sample concentrations
Te bla / Inductively counted nlasma I I I I I I	mass snertrometro autosam <u>oler load secuence for feral sample *</u>	cally 10 ppb, so sample concentrations
<u>דר אות אין ור</u> וויסוע במשום ער ה וי וי וי	mass snertrometro autosam <u>oler load servience for feral sample *</u>	cally 10 ppb, so sample concentrations
International design of the second design of the se	mass snortromotro autosam <u>olor load sonuenco for foral sample a</u>	cally 10 ppb, so <u>sam</u> ple concentrations
Inductively counted plasma.	mass snertrometry autosampler load seguence fo <u>r facal sample 3</u>	cally 10 ppb, s <u>o sam</u> ple concentrations
Inductively counted plasma.	mass snertrimetri autisame <u>ler load seruence for facal samile 3</u>	cally 10 ppb, so sample concentrations
I	mass snertrnmetry autosampler Inad seruence fo <u>r facal sample 3</u>	cally 10 ppb, so sample concentrations
I	maes snortrnmotry autosamplor Inad someons for foral sample 3	cally 10 ppb, so sample concentrations
I	maes snortrnmotry autosamplor Inad someons for foral sample 3	cally 10 ppb, so sample concentrations
Trala Anglytively counled plasma.	maes snortrnmotry autosamo <u>lor Inad somuoneo for foral samolo 3</u>	cally 10 ppb, so sample concentrations
I I I I I I I I I I I I I I	maes snortrnmotry autosamo <u>lor Inad somuoneo for foral samolo 3</u>	cally 10 ppb, so sample concentrations
I I I I I I I I I I I I I I I I I I I	maes snortrnmotry autosamo <u>lor Inad somuoneo for foral samolo 3</u>	cally 10 ppb, so sample concentrations
I I I I I I I I I I I I I I I I I I I	maes snortrnmotry autosamolor Inad somuoneo for foral samolo 3	cally 10 ppb, so sample concentrations
I I I I I I I I I I I I I I I I I I I	mass snortrnmotry autosamolar load somuence for foral samole *	cally 10 ppb, so sample concentrations
I	maes snortrnmotry autosamilar load someono for foral sample *	cally 10 ppb, so sample concentrations
	maes snartrnmatry autosamilar load samuanco for foral sample *	cally 10 ppb, so sample concentrations
I I	maes snartrnmatry autosamilar load samuanco for facal sample *	cally 10 ppb, so sample concentrations
Tralan Andurtivolv counlad nlasma.	maes snartrnmatry autosamolar load samuanco for facal samola *	cally 10 ppb, so sample concentrations
Traling A indirition counted plasma.	mass snartrnmatry autosamolar load samuanco for foral samola *	cally 10 ppb, so sample concentrations
	mass snartrnmatry autosamolor load sequence for foral samolo *	cally 10 ppb, so sample concentrations
	mass snartrnmatry autosamolar load samuanco for foral samola *	cally 10 ppb, so sample concentrations

_

To examine the effects of signal loss, a set of 10 fecal samples was run to verify the increased RSD for the last three samples in an analysis. A pooled set of fecal samples was prepared and isotope ratios determined

_ .

Figure 7. Boron signal loss and isotope ratios effects. Sequential determination of 12 aliquots of pooled fecal digests with cones showing signal loss caused by contamination from previous analysis. Blank corrected ¹¹B peak integral, ¹¹/_{cor}, (\Box) showing a 91% drop in signal; boron isotope ratios for each sample (\blacksquare) showing a 3.6% RSD over the run and 1.8% for samples 1 to 7. For comparison the urine isotope ratios (\bigcirc) collected from a metabolic cage from a single animal showing a 2.4% RSD over the entire run.

digestion blank, and bias standard. The loading sequence in Table 4 was based on samples digested in a 12-position microwave turntable. The microwave digestion procedure consisted of 10 samples, 1 digestion blank, and 1 NIST SRM biological standard. The single SRM was diluted into the 4 SRM standards shown in Table 4. For the bias standard, the 50 ppb boron standard in the calibration curve was used.

Several quality control checks were used during data analysis. The average peak integrals, I_{Avg} , and RSD for each isotope were examined. Typically, the RSD within a run was consistent. An RSD of $\leq 2\%$ for the isotope ratios indicates acceptable variability in an analysis. Finally, calculation of the boron concentration (ng/g) in the bias standard and the SRM biological standard using the mean ¹¹B molar concentration and the measured isotope ratio permits a final check within the run and comparison to previous runs.

Fractionation

Geochemists have shown boron isotope ratios are variable; therefore, there is not a single natural abundance ratio for boron,

÷

Characterization of natural waters using trace element analysis obtained in a plasma source mass spectrometer. J Trace Microprobe Tech 9:1-93 (1991).

inductively coupled plasma-mass spectrometry. Appl Spectrosc 41:01-806 (1987).
10. Olivares JA, Houk RS. Suppression of analyte signal by various

ו אין	
1	
4 U	
·	
Fuere In	
• • • • •	
l	
<u></u>	
<u>.</u>	